Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.934-936
/
2004
본문에서는 최근 들어 각광을 받고 있는 패턴인식 방법론인 Support Vector Machine을 이용하여 중국어 개체명을 식별하는 방법을 제안하고자 한다. SVM(support vector machine)은 입력 자질이 많을 경우에도 안정적인 성능을 나타내고 보편적으로 적용할 수 있는 모델을 개발할 수 있는 장점이 있다. 실험에서 어휘. 품사, 의미부류 등 많은 수의 자질을 이용하였다. 실험결과는 본문에서 제안한 방법이 튜닝을 거치지 않아도 좋은 성능을 나타낼 수 있고, 수행 속도도 만족스럽다는 것을 보여주었다.
In a goal-oriented dialogue, speakers' intentions can be represented by domain actions that consist of pairs of a speech act and a concept sequence. Therefore, if we plan to implement an intelligent dialogue system, it is very important to correctly infer the domain actions from surface utterances. In this paper, we propose a statistical model to determine speech acts and concept sequences using conditional random fields at the same time. To avoid biased learning problems, the proposed model uses low-level linguistic features such as lexicals and parts-of-speech. Then, it filters out uninformative features using the chi-square statistic. In the experiments in a schedule arrangement domain, the proposed system showed good performances (the precision of 93.0% on speech act classification and the precision of 90.2% on concept sequence classification).
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.7
/
pp.1531-1536
/
2011
We propose an automatic swearword filter system for online game chatting by using Support Vector Machines(SVM). We collected chatting sentences from online games and tagged them as normal sentences or swearword included sentences. We use n-gram syllables and lexical-part of speech (POS) tags of a word as features and select useful features by chi square statistics. Each selected feature is represented as binary weight and used in training SVM. SVM classifies each chatting sentence as swearword included one or not. In experiment, we acquired overall 90.4% of F1 accuracy.
Annual Conference on Human and Language Technology
/
1996.10a
/
pp.489-496
/
1996
자연어 처리에서 언어에 대한 지식은 전자사전과 문법규칙으로 구성되어 서로 상보적 관계에 있고, 각 어휘에 대한 품사 및 기타 자질-값에 의해 매개된다. 이러한 언어지식을 전통적인 방법에서는 국어자료의 분석에 경험이 많은 언어전문가의 직관에 다분히 의존하여 정의하였고, 말뭉치를 이용한 자동 획득 기법에서는 태그세트를 먼저 설정하고, 이 태그를 원시 말뭉치에 부착하여 태깅된 말뭉치로부터 자동으로 통계적 분석을 통하여 획득한다. 그런데 두가지 접근방법이 가지고 있는 공통적인 문제점은 품사나 자질-값의 정의 및 할당기준, 선악의 평가기준, 튜닝에 대한 적극적 대처 등이 마련되어 있지 않다는 점이다. 이 연구에서는 이러한 문제점의 발생원인을 말뭉치 분석 과정에서 살펴보고, 품사 및 자질-값의 설정과 할당기준을 마련하는 방법론 및 이를 적극적으로 지원하는 도구를 설계한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.1
/
pp.163-168
/
2011
Blogs are an easy way to publish information, engage in discussions, and form communities on the Internet. Recently, there are several varieties of spam blog whose purpose is to host ads or raise the PageRank of target sites. Our purpose is to develope the system which detects these spam blogs (splogs) automatically among blogs on Web environment. After removing HTML of blogs, they are tagged by part of speech(POS) tagger. Words and their POS tags information is used as a feature type. Among features, we select useful features with X2 statistics and train the SVM with the selected features. Our system acquired 90.5% of F1 measure with SPLOG data set.
Annual Conference on Human and Language Technology
/
2002.10e
/
pp.129-136
/
2002
고성능의 질의응답 시스템을 구현하기 위해서는 사용자의 질의 유형의 난이도에 관계없이 의도를 파악할 수 있는 질의유형 분류기가 필요하다. 본 논문에서는 문서 범주화 기법을 이용한 질의 유형 분류기를 제안한다. 본 논문에서 제안하는 질의 유형 분류기의 분류 과정은 다음과 같다. 우선, 사용자 질의에 포함된 어휘, 품사, 의미표지와 같은 다양한 정보를 이용하여 사용자 질의로부터 자질들을 추출한다. 이 과정에서 질의의 구문 특성을 반영하기 위해서 슬라이딩 윈도 기법을 이용한다. 또한, 다량의 자질들 중에서 유용한 것들만을 선택하기 위해서 카이 제곱 통계량을 이용한다. 추출된 자질들은 벡터 공간 모델로 표현되고, 문서 범주화 기법 중 하나인 지지 벡터 기계(support vector machine, SVM)는 이 정보들을 이용하여 질의 유형을 분류한다. 본 논문에서 제안하는 시스템은 질의 유형 분류 문제에지지 벡터 기계를 이용한 자동문서 범주화 기법을 도입하여 86.4%의 높은 분류 정확도를 보였다. 또한 질의 유형 분류기를 통계적 방법으로 구축함으로써 lexico-syntactic 패턴과 같은 규칙을 기술하는 수작업을 배제할 수 있으며, 응용 영역의 변화에 대해서도 안정적인 처리와 빠른 이식성을 보장한다.
In this paper, we propose a model to enrich an ontology by incrementally extending the relations through variations of patterns. In order to generalize initial patterns, combinations of features are considered as candidate patterns. The candidate patterns are used to extract relations from Wikipedia, which are sorted out according to reliability based on corpus frequency. Selected patterns then are used to extract relations, while extracted relations are again used to extend the patterns of the relation. Through making variations of patterns in incremental enrichment process, the range of pattern selection is broaden and refined, which can increase coverage and accuracy of relations extracted. In the experiments with single-feature based pattern models, we observe that the features of lexical, headword, and hypernym provide reliable information, while POS and syntactic features provide general information that is useful for enrichment of relations. Based on observations on the feature types that are appropriate for each syntactic unit type, we propose a pattern model based on the composition of features as our ongoing work.
This paper describes an automatic summarization approach that constructs a summary by extracting sentences that are likely to represent the main theme of a document. As a way of selecting summary sentences, the system uses a model that takes into account lexical and statistical information obtained from a document corpus. As such, the system consists of two parts: the training part and the summarization part. The former processes sentences that have been manually tagged for summary sentences and extracts necessary statistical information of various kinds, and the latter uses the information to calculate the likelihood that a given sentence is to be included in the summary. There are at least three unique aspects of this research. First of all, the system uses a text component identification model to categorize sentences into one of the text components. This allows us to eliminate parts of text that are not likely to contain summary sentences. Second, although our statistically-based model stems from an existing one developed for English texts, it applies the framework to individual features separately and computes the final score for each sentence by combining the pieces of evidence using the Dempster-Shafer combination rule. Third, not only were new features introduced but also all the features were tested for their effectiveness in the summarization framework.
Proceedings of the Korean Society for Language and Information Conference
/
2002.06a
/
pp.10-38
/
2002
본고는 한국어 영형 대명사의 적절한 해석을 위해 개념적으로 전혀 새로운 이론을 제안한다. 일련의 다양한 제약들이 서로 연관되어 있음을 보인 후, 그러한 규칙의 다양성을 적절히 포착하기 위해 적절성 이론 (Optimality Theory)을 도입할 것을 제안하고, 그 토대 위에 다양한 제약들을 형식화한 후, 그 규칙들의 위계관계를 설정한다. 가장 우선순위를 갖는 제약으로 인접 요소간 어휘의미자질들이 일치해야 한다는 어휘의미제약(*Feature Mismatch)과 통사적 결속규칙을 의미론적으로 재해석한 결속원리 B(Principle B)를 선정한다. 그 다음 순위를 갖는 제약으로, 가능한 한 선행명사를 지칭하도록 요구하는 대용존중제약(DOAP: Don't Overlook Anaphoric Possibilities)과, 센터링 이론의 전이방식 개념을 도입하여 정의한 계속선호제약 (CONTINUE)을 제안한다
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.248-251
/
2011
본 연구에서는, 웹 문서로부터 특정 상품에 대한 의견 문장을 분석하는 오피니언 마이닝(Opinion Mining) 연구의 일환으로, 특히 함께 공기하는 자질 명사에 따라 그 극성 값이 달라지는 '비결정 오피니언어휘'의 처리를 위해서 도메인을 '맛집'으로 한정하여 공기하는 도메인 키워드의 목록을 결정하고, 이를 부분문법그래프(Local Grammar Graphs) 방법론을 통해서 이들 간의 어휘 통사적 관계를 결정해 주었다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.