• Title/Summary/Keyword: 어휘 자질

Search Result 103, Processing Time 0.02 seconds

Recognition Of Chinese Named-Entity Using Support Vector Machine (SVM을 이용한 중국어 개체명 식별)

  • Jin, Feng;Na, Seung-Hoon;Kang, In-Su;Li, Jin-Ji;Kim, Dong-Il;Lee, Jong-Hyeok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.934-936
    • /
    • 2004
  • 본문에서는 최근 들어 각광을 받고 있는 패턴인식 방법론인 Support Vector Machine을 이용하여 중국어 개체명을 식별하는 방법을 제안하고자 한다. SVM(support vector machine)은 입력 자질이 많을 경우에도 안정적인 성능을 나타내고 보편적으로 적용할 수 있는 모델을 개발할 수 있는 장점이 있다. 실험에서 어휘. 품사, 의미부류 등 많은 수의 자질을 이용하였다. 실험결과는 본문에서 제안한 방법이 튜닝을 거치지 않아도 좋은 성능을 나타낼 수 있고, 수행 속도도 만족스럽다는 것을 보여주었다.

  • PDF

A Domain Action Classification Model Using Conditional Random Fields (Conditional Random Fields를 이용한 영역 행위 분류 모델)

  • Kim, Hark-Soo
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • In a goal-oriented dialogue, speakers' intentions can be represented by domain actions that consist of pairs of a speech act and a concept sequence. Therefore, if we plan to implement an intelligent dialogue system, it is very important to correctly infer the domain actions from surface utterances. In this paper, we propose a statistical model to determine speech acts and concept sequences using conditional random fields at the same time. To avoid biased learning problems, the proposed model uses low-level linguistic features such as lexicals and parts-of-speech. Then, it filters out uninformative features using the chi-square statistic. In the experiments in a schedule arrangement domain, the proposed system showed good performances (the precision of 93.0% on speech act classification and the precision of 90.2% on concept sequence classification).

  • PDF

A Swearword Filter System for Online Game Chatting (온라인게임 채팅에서의 비속어 차단시스템)

  • Lee, Song-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1531-1536
    • /
    • 2011
  • We propose an automatic swearword filter system for online game chatting by using Support Vector Machines(SVM). We collected chatting sentences from online games and tagged them as normal sentences or swearword included sentences. We use n-gram syllables and lexical-part of speech (POS) tags of a word as features and select useful features by chi square statistics. Each selected feature is represented as binary weight and used in training SVM. SVM classifies each chatting sentence as swearword included one or not. In experiment, we acquired overall 90.4% of F1 accuracy.

Problem Analysis on Syntactic Linguistic Knowledge Acquisition and Design of a Supporting Tool (구문적 언어지식 획득 과정의 문제점 분석 및 지원도구 설계)

  • Lee, Hyun-A;Park, Jae-Deuk;Jang, Myung-Gil;Park, Soo-Jun;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.489-496
    • /
    • 1996
  • 자연어 처리에서 언어에 대한 지식은 전자사전과 문법규칙으로 구성되어 서로 상보적 관계에 있고, 각 어휘에 대한 품사 및 기타 자질-값에 의해 매개된다. 이러한 언어지식을 전통적인 방법에서는 국어자료의 분석에 경험이 많은 언어전문가의 직관에 다분히 의존하여 정의하였고, 말뭉치를 이용한 자동 획득 기법에서는 태그세트를 먼저 설정하고, 이 태그를 원시 말뭉치에 부착하여 태깅된 말뭉치로부터 자동으로 통계적 분석을 통하여 획득한다. 그런데 두가지 접근방법이 가지고 있는 공통적인 문제점은 품사나 자질-값의 정의 및 할당기준, 선악의 평가기준, 튜닝에 대한 적극적 대처 등이 마련되어 있지 않다는 점이다. 이 연구에서는 이러한 문제점의 발생원인을 말뭉치 분석 과정에서 살펴보고, 품사 및 자질-값의 설정과 할당기준을 마련하는 방법론 및 이를 적극적으로 지원하는 도구를 설계한다.

  • PDF

A Splog Detection System Using Support Vector Systems (지지벡터기계를 이용한 스팸 블로그(Splog) 판별 시스템)

  • Lee, Song-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.163-168
    • /
    • 2011
  • Blogs are an easy way to publish information, engage in discussions, and form communities on the Internet. Recently, there are several varieties of spam blog whose purpose is to host ads or raise the PageRank of target sites. Our purpose is to develope the system which detects these spam blogs (splogs) automatically among blogs on Web environment. After removing HTML of blogs, they are tagged by part of speech(POS) tagger. Words and their POS tags information is used as a feature type. Among features, we select useful features with X2 statistics and train the SVM with the selected features. Our system acquired 90.5% of F1 measure with SPLOG data set.

A Question Type Classifier Using a Support Vector Machine (지지 벡터 기계를 이용한 질의 유형 분류기)

  • An, Young-Hun;Kim, Hark-Soo;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.129-136
    • /
    • 2002
  • 고성능의 질의응답 시스템을 구현하기 위해서는 사용자의 질의 유형의 난이도에 관계없이 의도를 파악할 수 있는 질의유형 분류기가 필요하다. 본 논문에서는 문서 범주화 기법을 이용한 질의 유형 분류기를 제안한다. 본 논문에서 제안하는 질의 유형 분류기의 분류 과정은 다음과 같다. 우선, 사용자 질의에 포함된 어휘, 품사, 의미표지와 같은 다양한 정보를 이용하여 사용자 질의로부터 자질들을 추출한다. 이 과정에서 질의의 구문 특성을 반영하기 위해서 슬라이딩 윈도 기법을 이용한다. 또한, 다량의 자질들 중에서 유용한 것들만을 선택하기 위해서 카이 제곱 통계량을 이용한다. 추출된 자질들은 벡터 공간 모델로 표현되고, 문서 범주화 기법 중 하나인 지지 벡터 기계(support vector machine, SVM)는 이 정보들을 이용하여 질의 유형을 분류한다. 본 논문에서 제안하는 시스템은 질의 유형 분류 문제에지지 벡터 기계를 이용한 자동문서 범주화 기법을 도입하여 86.4%의 높은 분류 정확도를 보였다. 또한 질의 유형 분류기를 통계적 방법으로 구축함으로써 lexico-syntactic 패턴과 같은 규칙을 기술하는 수작업을 배제할 수 있으며, 응용 영역의 변화에 대해서도 안정적인 처리와 빠른 이식성을 보장한다.

  • PDF

Incremental Enrichment of Ontologies through Feature-based Pattern Variations (자질별 관계 패턴의 다변화를 통한 온톨로지 확장)

  • Lee, Sheen-Mok;Chang, Du-Seong;Shin, Ji-Ae
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.365-374
    • /
    • 2008
  • In this paper, we propose a model to enrich an ontology by incrementally extending the relations through variations of patterns. In order to generalize initial patterns, combinations of features are considered as candidate patterns. The candidate patterns are used to extract relations from Wikipedia, which are sorted out according to reliability based on corpus frequency. Selected patterns then are used to extract relations, while extracted relations are again used to extend the patterns of the relation. Through making variations of patterns in incremental enrichment process, the range of pattern selection is broaden and refined, which can increase coverage and accuracy of relations extracted. In the experiments with single-feature based pattern models, we observe that the features of lexical, headword, and hypernym provide reliable information, while POS and syntactic features provide general information that is useful for enrichment of relations. Based on observations on the feature types that are appropriate for each syntactic unit type, we propose a pattern model based on the composition of features as our ongoing work.

Development and Evaluation of a Document Summarization System using Features and a Text Component Identification Method (텍스트 구성요소 판별 기법과 자질을 이용한 문서 요약 시스템의 개발 및 평가)

  • Jang, Dong-Hyun;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.678-689
    • /
    • 2000
  • This paper describes an automatic summarization approach that constructs a summary by extracting sentences that are likely to represent the main theme of a document. As a way of selecting summary sentences, the system uses a model that takes into account lexical and statistical information obtained from a document corpus. As such, the system consists of two parts: the training part and the summarization part. The former processes sentences that have been manually tagged for summary sentences and extracts necessary statistical information of various kinds, and the latter uses the information to calculate the likelihood that a given sentence is to be included in the summary. There are at least three unique aspects of this research. First of all, the system uses a text component identification model to categorize sentences into one of the text components. This allows us to eliminate parts of text that are not likely to contain summary sentences. Second, although our statistically-based model stems from an existing one developed for English texts, it applies the framework to individual features separately and computes the final score for each sentence by combining the pieces of evidence using the Dempster-Shafer combination rule. Third, not only were new features introduced but also all the features were tested for their effectiveness in the summarization framework.

  • PDF

A Sketch of an Optimality Theoretic Account of Anaphora Resolution in Korean

  • Hong, Minpyo
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.06a
    • /
    • pp.10-38
    • /
    • 2002
  • 본고는 한국어 영형 대명사의 적절한 해석을 위해 개념적으로 전혀 새로운 이론을 제안한다. 일련의 다양한 제약들이 서로 연관되어 있음을 보인 후, 그러한 규칙의 다양성을 적절히 포착하기 위해 적절성 이론 (Optimality Theory)을 도입할 것을 제안하고, 그 토대 위에 다양한 제약들을 형식화한 후, 그 규칙들의 위계관계를 설정한다. 가장 우선순위를 갖는 제약으로 인접 요소간 어휘의미자질들이 일치해야 한다는 어휘의미제약(*Feature Mismatch)과 통사적 결속규칙을 의미론적으로 재해석한 결속원리 B(Principle B)를 선정한다. 그 다음 순위를 갖는 제약으로, 가능한 한 선행명사를 지칭하도록 요구하는 대용존중제약(DOAP: Don't Overlook Anaphoric Possibilities)과, 센터링 이론의 전이방식 개념을 도입하여 정의한 계속선호제약 (CONTINUE)을 제안한다

  • PDF

Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion (휴먼 오피니언 자동 분류 시스템 구현을 위한 비결정 오피니언 형용사 구문에 대한 연구)

  • Ahn, Ae-Lim;Han, Yong-Jin;Park, Se-Young;Nam, Jee-Sun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.248-251
    • /
    • 2011
  • 본 연구에서는, 웹 문서로부터 특정 상품에 대한 의견 문장을 분석하는 오피니언 마이닝(Opinion Mining) 연구의 일환으로, 특히 함께 공기하는 자질 명사에 따라 그 극성 값이 달라지는 '비결정 오피니언어휘'의 처리를 위해서 도메인을 '맛집'으로 한정하여 공기하는 도메인 키워드의 목록을 결정하고, 이를 부분문법그래프(Local Grammar Graphs) 방법론을 통해서 이들 간의 어휘 통사적 관계를 결정해 주었다.