• Title/Summary/Keyword: 어플리케이터

Search Result 17, Processing Time 0.02 seconds

Clinical Risk Evaluation Using Dose Verification Program of Brachytherapy for Cervical Cancer (자궁경부암 근접치료 시 선량 검증 프로그램을 통한 임상적 위험성 평가)

  • Dong‑Jin, Kang;Young‑Joo, Shin;Jin-Kyu, Kang;Jae‑Yong, Jung;Woo-jin, Lee;Tae-Seong, Baek;Boram, Lee
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.553-560
    • /
    • 2022
  • The purpose of this study is to evaluate the clinical risk according to the applicator heterogeneity, mislocation, and tissue heterogeneity correction through a dose verification program during brachytherapy of cervical cancer. We performed image processing with MATLAB on images acquired with CT simulator. The source was modeled and stochiometric calibration and Monte-Carlo algorithm were applied based on dwell time and location to calculate the dose, and the secondary cancer risk was evaluated in the dose verification program. The result calculated by correcting for applicator and tissue heterogeneity showed a maximum dose of about 25% higher. In the bladder, the difference in excess absolute risk according to the heterogeneity correction was not significant. In the rectum, the difference in excess absolute risk was lower than that calculated by correcting applicator and tissue heterogeneity compared to the water-based calculation. In the femur, the water-based calculation result was the lowest, and the result calculated by correcting the applicator and tissue heterogeneity was 10% higher. A maximum of 14% dose difference occurred when the applicator mislocation was 20 mm in the Z-axis. In a future study, it is expected that a system that can independently verify the treatment plan can be developed by automating the interface between the treatment planning system and the dose verification program.

Development of a cylindrical ultrasound applicator for Intracavitary Hyperthermia (강내온열 치료를 위한 원통형 초음파 치료기 개발)

  • Lee, Rena J.;Hyunsuk Suh
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2002
  • In this study, a cylindrical ultrasound applicator is developed for the treatment of vagina and rectum in combination with high dose rate brachytherapy. A cylindrical transducer (PZT-8, 1=1.5 cm, thickness=1.5mm OD=2.5 cm) was used as an energy source for induction of hyperthermia. Three single-element applicators were constructed to examine the performance of the PZT material. Vector impedance was measured to determine driving frequency. The efficiencies of the elements were determined using a radiation force technique to evaluate the feasibility of using the applicator as a hyperthermia source. A multi-element ultrasound applicator was designed using the PZT-8 material for the treatment of vagina. Results from the vector impedance measurements showed maximum magnitude at 1.78, 1.77, and 1.77 MHz for applicator 1,2, and 3, respectively. The radiation force measurements showed that the acoustic power of 40 watts was obtained in all three elements. The average efficiencies of the elements were 61.4, 65.2, and 54.0% for element 1, 2, and 3, respectively. The designed ultrasound hyperthermia applicator could be used in combination with high dose rate brachytherapy for the treatment of vagina and rectum. The use of this applicator with intracavitary brachytherapy could offer improved tumor control by increasing radiosensitiyity of the tumor.

  • PDF

Fabrication and characterization of 3-D porous scaffold by polycaprolactone (폴리카프로락톤을 이용한 3차원 다공성 지지체 제조 및 특성 분석)

  • Kim, Jin-Tae;Bang, Jung Wan;Hyun, Chang-Yong;Choi, Hyo Jeong;Kim, Tae-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • This study was a preparatory experiment aimed the development of membrane scaffolds for tissue engineering. A PCL composite solution contained sodium chloride(NaCl). PCL porous membrane scaffolds were formed on a glass casting plate using a film applicator and immersed in distilled water to remove the NaCl reaching after drying. NaCl was used as a pore former for a 3 dimensional pore net-work. The dry condition parameters were $4^{\circ}C$, room temperature (RT) and $40^{\circ}C$ for each different temperatures in the drying experiment. SEM revealed the morphology of the pores in the membrane after drying and evaluated the in vitro cytotoxicity for basic bio-compatibility. The macro and micro pores existed together in the scaffold and showed a 3-dimensional pore net-working morphology at RT. The in vitro cytotoxicity test result was "grade 2" in accordance with the criterion for cytotoxicity by ISO 10993-5. The dry condition affected the formation of a 3 dimensional pore network and micro and macro pores. Therefore, these results are expected provide the basic process for the development of porous membrane scaffolds to control degradation and allow drug delivery.

Effect of Coating Technique on the Characteristics of ZnS(Ag) Scintillation Composite for Alpha-ray Detection (알파선 측정용 ZnS(Ag) 섬광 복합체의 특성에 있어 도포방법이 미치는 영향)

  • Jung, Yeon-Hee;Park, So-Jin;Seo, Bum-Kyoung;Lee, Kune Woo;Han, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.604-608
    • /
    • 2006
  • Polymer composites for measuring the radioactive contamination are prepared by coating ZnS(Ag) powders as a scintillator on polysulfone base layer. The composites consist of the active layer for a scintillation reaction with radioactive wastes and the transparent support layer for transmittance of light photons emitted by scintillation in the active layer. The binding of the active layer, including ZnS(Ag), on the support layer is proceeded via coating with polysulfone as a binder, without any extra adhesive. The coating was obtained by either casting via a Doctor Blade as applicator or screen printing. The prepared composites feature a monolithic structure, resulting in the complete adhesion between two layers. The composite prepared by the casting technique using an applicator holds a good detection efficiency in measuring the alpha radionuclide, but its structure becomes fragile because of warping in morphology. On the contrary, the composite prepared by the screen printing shows a good detection capacity as well as a good stability in a mechanical shape.

An Accelerated Approach to Dose Distribution Calculation in Inverse Treatment Planning for Brachytherapy (근접 치료에서 역방향 치료 계획의 선량분포 계산 가속화 방법)

  • Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.633-640
    • /
    • 2023
  • With the recent development of static and dynamic modulated brachytherapy methods in brachytherapy, which use radiation shielding to modulate the dose distribution to deliver the dose, the amount of parameters and data required for dose calculation in inverse treatment planning and treatment plan optimization algorithms suitable for new directional beam intensity modulated brachytherapy is increasing. Although intensity-modulated brachytherapy enables accurate dose delivery of radiation, the increased amount of parameters and data increases the elapsed time required for dose calculation. In this study, a GPU-based CUDA-accelerated dose calculation algorithm was constructed to reduce the increase in dose calculation elapsed time. The acceleration of the calculation process was achieved by parallelizing the calculation of the system matrix of the volume of interest and the dose calculation. The developed algorithms were all performed in the same computing environment with an Intel (3.7 GHz, 6-core) CPU and a single NVIDIA GTX 1080ti graphics card, and the dose calculation time was evaluated by measuring only the dose calculation time, excluding the additional time required for loading data from disk and preprocessing operations. The results showed that the accelerated algorithm reduced the dose calculation time by about 30 times compared to the CPU-only calculation. The accelerated dose calculation algorithm can be expected to speed up treatment planning when new treatment plans need to be created to account for daily variations in applicator movement, such as in adaptive radiotherapy, or when dose calculation needs to account for changing parameters, such as in dynamically modulated brachytherapy.

Patient Setup Aid with Wireless CCTV System in Radiation Therapy (무선 CCTV 시스템을 이용한 환자 고정 보조기술의 개발)

  • Park, Yang-Kyun;Ha, Sung-Whan;Ye, Sung-Joon;Cho, Woong;Park, Jong-Min;Park, Suk-Won;Huh, Soon-Nyung
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.300-308
    • /
    • 2006
  • $\underline{Purpose}$: To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. $\underline{Materials\;and\;Methods}$: In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal (${\sim}2.4\;GHz$ and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images to investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. $\underline{Results}$: More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of $1.5{\pm}0.7\;mm$ with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of ${\sim}0.17\;sec$. $\underline{Conclusion}$: The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful.

The Study of Shielding Effect on Ovoids of Three Different Gynecological Applicator Sets in microSelectron-HDR System (microSelectron-HDR System에서 부인암 강내조사에 쓰이는 세 가지 Applicator Set들의 Ovoids에 대한 차폐효과 연구)

  • Cho, Young-K.;Park, Sung-Y.;Choi, Jin-H.;Kim, Hung-J.;Kim, Woo-C.;Loh, John-J.K.;Kim, Joo-Y.
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.259-266
    • /
    • 1998
  • There are three different types of gynecological applicator sets available in microSelectron-high dose-rate(HDR) System by Nucletron; standard applicator set(SAS), standard shielded applicator set(SSAS), and Fletcher-Williamson applicator set(FWAS). Shielding effect of a SAS without shielding material was compared with that of a SSAS with shielding material made of stainless steel(density ${\varrho}=8,000kg/m^3$) at the top and bottom of each ovoid, and of a FWAS with shielding material made of tungsten alloy(density ${\varrho}=14,000kg/m^3$ at the top and bottom of each ovoid. The shielding effects to the rectum and bladder of these two shielded applicator sets were to be measured at reference points with an ion chamber and specially designed supporting system for applicator ovoids inside of the computerized 3-dimensional water phantom. To determine the middle point of two ovoids the measurement was performed with the reference tip of ion chamber placed at the same level and at the middle point from the two ovoids, while scanning the dose with the ion chamber on each side of ovoids. The doses to the reference points of rectum were measured at 20(Rl), 25(R2), 30(R3), 40(R4), 50(R5), and 60(R6) mm located posteriorly on the vertical line drawn from M5(the middle dwell position of ovoid), and the doses to the bladder were measured at 20(Bl), 30(B2), 40(B3), 50(B4), and 60(B5) mm located anteriorly on the vertical line drawn from M5. The same technique was employed to measure the doses on each reference point of both SSAS and FWAS. The differences of measured rectal doses at 25 mm(R2) and 30 mm(R3) between SAS and SSAS were 8.0 % and 6.0 %: 25.0% and 23.0 % between SAS and FWAS. The differences of measured bladder doses at 20 mm(Bl) and 30 mm(B2) between SAS and SSAS were 8.0 % and 3.0 %: 23.0 % and 17.0 % between SAS and FWAS. The maximum shielding effects to the rectum and bladder of SSAS were 8.0 % and 8.0 %, whereas those of FWAS were 26.0 % and 23.0 %, respectively. These results led to the conclusion that FWAS has much better shielding effect than SSAS does, and when SSAS and FWAS were used for gynecological intracavitary brachytherapy in microSelectron-HDR system, the dose to the rectum and bladder was significantly reduced to optimize the treatment outcome and to lower the complication rates in the rectum and bladder.

  • PDF