• Title/Summary/Keyword: 어절 정보

Search Result 378, Processing Time 0.023 seconds

An Efficient Correction Method for Misrecognized Words in Off-line Hangul Character Recognition (오프라인 한글 문자 인식을 위한 효율적인 오인식 단어 교정 방법)

  • Lee, Byeong-Hui;Kim, Tae-Gyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1598-1606
    • /
    • 1996
  • In order to achieve high accuracy of off-line character recognition(OCR) systems, the recognized text must be processed through a post-processing stage using contextual information. In this paper, we reclassify Korean word classes in terms of OCR word correction. And we collect combinations of Korean particles(approximately 900) linguistic verbal from(around 800). We aggregate 9 Korean irregular verbal phrases defined from a Korean linguistic point of view. Using these Korean word information and a Head-tail method, we can correct misrecognized words. A Korean character recognizer demonstrates 93.7% correct character recognition without a post-processing stage. The entire recognition rate of our system with a post-processing stage exceeds 97% correct character recognition.

  • PDF

Part-Of-Speech Tagging and the Recognition of the Korean Unknown-words Based on Machine Learning (기계학습에 기반한 한국어 미등록 형태소 인식 및 품사 태깅)

  • Choi, Maeng-Sik;Kim, Hark-Soo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Unknown morpheme errors in Korean morphological analysis are divided into two types: The one is the errors that a morphological analyzer entirely fails to return any morpheme sequences, and the other is the errors that a morphological analyzer returns incorrect combinations of known morphemes. Most previous unknown morpheme estimation techniques have been focused on only the former errors. This paper proposes a unknown morpheme estimation method which can handle both of the unknown morpheme errors. The proposed method detects Eojeols (Korean spacing units) that may include unknown morpheme errors using SVM (Support Vector Machine). Then, using CRFs (Conditional Random Fields), it segments morphemes from the detected Eojeols and annotates the segmented morphemes with new POS tags. In the experiments, the proposed method outperformed the conventional method based on the longest matching of functional words. Based on the experimental results, we knew that the second type errors should be dealt with in order to increase the performance of Korean morphological analysis.

A Korean Homonym Disambiguation System Using Refined Semantic Information and Thesaurus (정제된 의미정보와 시소러스를 이용한 동형이의어 분별 시스템)

  • Kim Jun-Su;Ock Cheol-Young
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.829-840
    • /
    • 2005
  • Word Sense Disambiguation(WSD) is one of the most difficult problem in Korean information processing. We propose a WSD model with the capability to filter semantic information using the specific characteristics in dictionary dictions, and nth added information, useful to sense determination, such as statistical, distance and case information. we propose a model, which can resolve the issues resulting from the scarcity of semantic information data based on the word hierarchy system (thesaurus) developed by Ulsan University's UOU Word Intelligent Network, a dictionary-based toxicological database. Among the WSD models elaborated by this study, the one using statistical information, distance and case information along with the thesaurus (hereinafter referred to as 'SDJ-X model') performed the best. In an experiment conducted on the sense-tagged corpus consisting of 1,500,000 eojeols, provided by the Sejong project, the SDJ-X model recorded improvements over the maximum frequency word sense determination (maximum frequency determination, MFC, accuracy baseline) of $18.87\%$ ($21.73\%$ for nouns and inter-eojeot distance weights by $10.49\%$ ($8.84\%$ for nouns, $11.51\%$ for verbs). Finally, the accuracy level of the SDJ-X model was higher than that recorded by the model using only statistical information, distance and case information, without the thesaurus by a margin of $6.12\%$ ($5.29\%$ for nouns, $6.64\%$ for verbs).

Answer Constraints Extraction on User Question for Wikipedia QA (위키피디아 QA를 위한 질의문의 정답제약 추출)

  • Wang, JiHyun;Heo, Jeong;Lee, Hyungjik;Bae, Yongjin;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.248-250
    • /
    • 2017
  • 질의응답 시스템에서 정답을 제약하기 위한 위키피디아 영역의 정답제약 9개를 정의하고 질문 문장에서 제약표현을 추출하는 방법을 제안한다. 다어절의 정답제약 표현을 추출하기 위해서 언어분석 결과를 활용하여 정답제약 후보를 생성하며 후보단위로 정답제약 표현을 학습하기 위한 자질을 제시한다. 기계학습 방법을 이용하여 정답제약 후보 별로 정답제약 태그를 분류하여 정답제약 표현을 추출한다. 성능 실험은 각 정답제약 태그 별로 F1-Score 평가를 수행하였다.

  • PDF

Generate Korean image captions using LSTM (LSTM을 이용한 한국어 이미지 캡션 생성)

  • Park, Seong-Jae;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.82-84
    • /
    • 2017
  • 본 논문에서는 한국어 이미지 캡션을 학습하기 위한 데이터를 작성하고 딥러닝을 통해 예측하는 모델을 제안한다. 한국어 데이터 생성을 위해 MS COCO 영어 캡션을 번역하여 한국어로 변환하고 수정하였다. 이미지 캡션 생성을 위한 모델은 CNN을 이용하여 이미지를 512차원의 자질로 인코딩한다. 인코딩된 자질을 LSTM의 입력으로 사용하여 캡션을 생성하였다. 생성된 한국어 MS COCO 데이터에 대해 어절 단위, 형태소 단위, 의미형태소 단위 실험을 진행하였고 그 중 가장 높은 성능을 보인 형태소 단위 모델을 영어 모델과 비교하여 영어 모델과 비슷한 성능을 얻음을 증명하였다.

  • PDF

Automatic Korean Spacing Words Correction System With Bidirectional Longest Match Strategy (양방향 최장일치법을 이용한 한국어 띄어쓰기 자동 교정 시스템)

  • Choi, Jae-Hyuk
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.145-151
    • /
    • 1997
  • 기존의 맞춤법 검사기의 단점인 오류 수정 작업과 처리 시간을 감소시키면서, 높은 오류 교정의 정확률을 보장하는 자동 오류 교정 시스템의 개발을 위한 첫 단계로써 한국어 오류의 80% 이상을 차지하는 띄어쓰기 오류에 대한 자동 교정 시스템을 개발하였다. 본 논문에서는 우리가 사용하는 일반 문서에서 띄어쓰기가 잘못된 단어에 대한 교정과 오류 단어에 대한 검색을 행하기 위하여, 띄어쓰기 교정 시스템의 개발 단계에서 현실적으로 고려해야 할 사항과 교정 정확률 및 처리 속도를 높이기 위한 본 시스템의 띄어쓰기 오류 루틴을 제시한다. 본 시스템의 처리 결과, 올바른 어절을 제외한 띄어쓰기가 잘못된 오류 단어(띄붙 오류와 붙띄 오류 포함)에 대해 약 98.7%의 띄어쓰기 교정 성공률을 보였다.

  • PDF

Compound Noun Analysis Strengthened Unknown Noun Processing (미등록어 처리가 강화된 복합명사 분해)

  • Kim, Eung-Gyun;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.40-46
    • /
    • 2003
  • 본 논문에서는 분해 패턴을 이용한 재사용 분해 알고리즘과 외래어 인식, 이름 명사 인식, 지명 인식에 의한 미등록어 추정을 이용한 복합명사 분해 방법을 제안한다. 재사용 분해 알고리즘은 현재 분해되는 음절보다 짧은 길이의 음절에서 사용된 분해 방법을 재사용하여 분해가 이루어짐을 의미한다. 외래어 인식에서는 한국어 음절에서 비교적 사용 빈도가 낮은 음절들로 외래어가 구성이 됨을 이용한다. 이름 명사는 한국인의 이름 특성에서 한자 독음을 차용하여 작명이 이루어지기 때문에 일정한 수의 음절이 반복적으로 사용되는 점을 이용하여 인식한다. 지명 인식 방법은 지명이 출현하는 패턴을 분석하여 지명 사전의 검색으로 인식한다. 이와 같이 지명 사전에 의한 지명 인식과 알고리즘에 의한 외래어 및 이름 명사 인식 방법을 사용함으로써 미등록어 추정에 정확성을 높이고 분해 정확율 향상에 기여한다. 실험 결과 미등록어가 포함된 약 1,500어절에 대해 약 98%의 정확율이 나타났고, 미등록어가 사전에 모두 등재된 후의 실험에서는 약 99%의 정확율을 보였다.

  • PDF

Improvement of Automatic Word Segmentation of Korean by Simplifying Syllable Bigram (음절 바이그램 단순화 기법에 의한 한국어 자동 띄어쓰긴 시스템의 성능 개선)

  • Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.227-231
    • /
    • 2003
  • 한극 문서의 자동 띄어쓰기는 웹 문서와 검색 질의어, 법률안 제목, 문자 메시지 등에서 띄어쓰지 않은 문장에 대해 자동으로 공백을 삽입해 주는 기능이다. 기존의 자동 띄어쓰기 기법은 각 문자 경계마다 공백 삽입 일치도를 비교하는 방식으로 평가되었으나, 실제 응용 시스템에서는 어절 인식 정확률이 높고, 공백의 과생성 오류가 적으며, 바이그램 데이터 크기가 작아야 한다. 본 논문에서는 이러한 요구 조건에 따라 새로운 평가 기준을 제시하고, 이에 따라 기존 방법보다 바이그램 데이터 크기가 매우 작고, 정확률이 높은 자동 띄어씌기 방법을 제안하였다.

  • PDF

Transcribing Some Text Symbols for Improving Korean TTS System (한국어 음성 합성을 위한'이음표'의 문자 전사)

  • 정영임;정휘웅;윤애선;권혁철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.558-560
    • /
    • 2003
  • 최근 신문기사의 음성 서비스 등 음성합성 연구가 실용단계로 접어들고 있으나, 텍스트의 비-문자 처리에는 오류율이 높다. 본 연구는 신문 텍스트에 나타나는 비-문자 중 중의성이 높은 이음표의 문자화 유형을 6가지로 제시하고, 이음표를 포함한 어절의 패턴화된 구조 및 좌우 문맥 정보를 이용하여 이음표의 문자화 규칙을 알아본다. 제시된 이응표의 문자화 규칙과 이음표가 좌우 문맥 숫자의 문자화에 미치는 영향에 따른 숫자 읽기 방식을 포함하여 이음표 포함된 텍스트의 문자화 전사 시스템을 구현하였고, 2런치 J신문 텍스트를 코퍼스로 하여 이음표 문자화 시스템의 정확도를 측정하였다. 아울러 실험 결과에서 오류로 나타난 유형을 분석하여 정확도를 향상시킬 수 있는 방안을 제시하였다.

  • PDF

Korean Dependency Parsing with Multi-layer Pointer Networks (멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석)

  • Park, Cheoneum;Hwang, Hyunsun;Lee, Changki;Kim, Hyunki
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.92-96
    • /
    • 2017
  • 딥 러닝 모델은 여러 히든 레이어로 구성되며, 히든 레이어의 깊이가 깊어질수록 레이어의 벡터는 높은 수준으로 추상화된다. 본 논문에서는 Encoder RNN의 레이어를 여러 층 쌓은 멀티 레이어 포인터 네트워크를 제안하고, 멀티 태스크 학습 기반인 멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석 모델을 제안한다. 멀티 태스크 학습 모델은 어절 간의 의존 관계와 의존 레이블 정보를 동시에 구하여 의존 구문 분석을 수행한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 의존 구문 분석 연구들 보다 좋은 UAS 92.16%, LAS 89.88%의 성능을 보였다.

  • PDF