• Title/Summary/Keyword: 얕은 기초

Search Result 142, Processing Time 0.03 seconds

Verification of Nonlinear Numerical Analysis for Seismic Response of Single Degree of Freedom Structure with Shallow Foundation (비선형 수치해석을 통한 단자유도 얕은기초 구조물의 지진 응답특성 검증)

  • Choo, Yun-Wook;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.29-40
    • /
    • 2013
  • Seismic response of single degree of freedom system supported by shallow foundation was analyzed by using nonlinear explicit finite difference element code. Numerical analysis results were verified with dynamic centrifuge test results of the same soil profile and structural dimensions with the numerical analysis model at a centrifugal acceleration of 20 g. Differences between the analysis and the test results induced by the boundary conditions of control points can be reduced by adding additional local damping to the natural born cyclic hysteretic damping of the soil strata. The analysis results show good agreement with the test results in terms of both time histories and response spectra. Thus, it can be concluded that the nonlinear explicit finite difference element code will be a useful technique for estimating seismic residual displacement, earthpressure etc. which are difficult to measure during laboratory tests and real earthquake.

Numerical Analysis on the Size Effect of a Footing (기초의 크기효과에 관한 수치해석)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.778-784
    • /
    • 2015
  • Finite element analyses were conducted to investigate the size effect on the bearing capacity and settlement of shallow foundations, and the results were compared with those of theoretical equations. The calculated bearing capacity of the plate by numerical analysis and the theoretical equation was similar. Numerical analyses showed that the ultimate bearing capacity of strip footing on sand was affected by the size effect, whereas the ultimate bearing capacity of strip footing on clay was not affected by the size effect. Numerical analyses showed that the square footing was unaffected by the size effect regardless of the type of foundation soil. In contrast to theoretical equations, settlement of the footing was affected by the size effect and was proportional to the footing width.

Bearing Capacity of Shallow Foundation on a Finite Layer of Sandy Ground Underlain by a Rigid Base (강성저면위 유한한 두께의 모래지반에 놓인 얕은기초의 지지력)

  • Jun, Sang-Hyun;Yoo, Nam-Jae;Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.39-48
    • /
    • 2011
  • In this paper the method of estimating the bearing capacity of shallow foundation on a finite layer of sandy ground underlain by a rigid base was proposed by assessing results of the model test and the numerical analyses. For model experiments, the centrifuge tests under 1g and 20 g of gravitational levels were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sand layer (H) to the width of strip footing (B). As results of tests, bearing capacity tends to increase with the value of H/B while settlement for a given load intensity decreases. Bearing capacity also increases with relative density of the soil. In order to propose the method of estimating the bearing capacity of thin sandy layer underlain by a rigid base, values of bearing capacity factors from test results were compared with the values of modified bearing capacity factor by Mandel & Salencon (1972) considering the effect of H/B value on bearing capacity. The relation of bearing capacity factor ratio, normalizing friction angle of sandy soil, with the value of H/B was suggested so that this relation could be applied to design in the safe side. The results of numerical analyses obrained by changing the layout of footing, relative density of sandy soil and the value of H/B, were in good agreements with the suggested relation.

Uplift Capacity for Bond Type Anchored Foundations in Rock Masses (부착형 암반앵커기초의 인발지지력 평가)

  • Kim, Dae-Hong;Lee, Yong-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.147-160
    • /
    • 2008
  • This paper presents the results of full-scale loading tests performed on 54 passive anchors and 4 group anchored footings grouted to various lengths at several sites in Korea. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, properties of the discontinuities, and the strength of rebar. Anchors in poor quality rocks generally fail along the grout/rock interfaces when their depths are very shallow (a fixed length of less than 1 m). However, even in such poor rocks, we can induce a more favorable mode of rock pull-up failure by increasing the fixed length of the anchors. On the other hand, anchors in good quality rocks show rock pull-up failures with high uplift resistance even when they are embedded at a shallow depth. Laboratory test results revealed that a form of progressive failure usually occurs starting near the upper surface of the grout, and then progresses downward. The ultimate tendon-grout bond strength was measured from $18{\sim}25%$ of unconfined compressive strength of grout. One of the important findings from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for a transmission tower foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Study on Behavior of Failure of Footing through Numerical Analysis (수치해석을 통한 기초지반의 파괴거동 고찰)

  • Lee, Seung-Hyun;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2212-2218
    • /
    • 2015
  • In order to find out the load bearing behavior of sand and clay which sustain three types of shallow footing, finite element analyses were performed. Failure zone of sand which sustain strip footing was affected by relative density of sand whereas, failure zone of clay was not affected by soil strength and it was similar to the failure zone which is considered in theory. Considering the shape of load-settlement curves obtained by numerical analyses, punching shear failure can be seen in loose sand and ultimate bearing load can not be seen in dense sand whereas, yielding point can be seen in clay. Ultimate bearing loads for sand predicted by theory were greater than those obtained by numerical analyses and ultimate bearing loads for clay predicted by theory were similar to those of numerical analyses. Ultimate bearing loads determined by 1 inch settlement criteria were slightly less than those of numerical analyses.

A Reliability Analysis of Shallow Foundations using a Single-Mode Performance Function (단일형 거동함수에 의한 얕은 기초의 신뢰도 해석 -임해퇴적층의 토성자료를 중심으로-)

  • 김용필;임병조
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.27-44
    • /
    • 1986
  • The measured soil data are analyzed to the descriptive statistics and classified into the four models of uncorrelated-normal (UNNO), uncorrelated-nonnormal (VNNN), correlatedonnormal(CONN), and correlated-nonnormal(CONN) . This paper presents the comparisons of reliability index and check points using the advanced first-order second-moment method with respect to the four models as well as BASIC Program. A sin91e-mode Performance function is consisted of the basic design variables of bearing capacity and settlements on shallow foundations and input the above analyzed soil informations. The main conclusions obtained in this study are summarized as follows: 1. In the bearing capacity mode, cohesion and bearing-capacity factors by C-U test are accepted for normal and lognormal distribution, respectively, and negatively low correlated to each other. Since the reliability index of the CONN model is the lowest one of the four model, which could be recommended a reliability.based design, whereas the other model might overestimate the geotechnical conditions. 2. In the case of settlements mode, the virgin compression ratio and preccnsolidation pressure are fitted for normal and lognormal distribution, respectively. Constraining settlements to the lower ones computed by deterministic method, The CONN model is the lowest reliability of the four models.

  • PDF

A Parametric Study to Estimate the Behavior of a Piled Raft Foundation Influenced by Ground Conditions (지반조건이 Piled Raft 기초의 거동에 미치는 영향 평가를 위한 매개변수 연구)

  • You, Kwang-Ho;Jung, Yeun-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.35-46
    • /
    • 2016
  • In this study, a sensitivity analysis was carried out by using numerical analysis under the consideration that it is difficult to analyze the behavior of real piled raft foundations on different ground conditions through a real scale test. The program used for numerical analysis is FLAC 3D based on the finite difference method. Piles were modelled by using pile element that is one of the structure elements of FLAC 3D and the ground and raft were modelled by using continuum element. With a fixed pile arrangement of $3{\times}3$, the diameter, length, space of piles, and ground conditions were selected as sensitivity parameters and their mutual correlation were investigated. As a result, the bigger and longer pile diameter, length and pile space are, the bigger the bearing capacity of the piled raft becomes. When pile space exceeded a specific value, however, the piled raft foundation behaved like a shallow foundation supported by only a raft. Also it can be confirmed that the better ground conditions are, the more total bearing capacity of the piled raft foundation increases.

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.

The Strength and Deformation Characteristics of Jumunjin Sand under Low Confining Stresses (낮은 구속응력에 대한 주문진 표준사의 강도 및 변형 특성)

  • Han, Young-Chul;Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.33-42
    • /
    • 2014
  • The shear strength and deformation characteristics of granular soils at low confining stresses differ from those with high confining stresses. Thus, the clear understanding of geotechnical problems related to the low confining stress state such as the stability of shallow foundations, embankments, slope failure, debris flow characteristics and liquefaction as well as the various laboratory model tests is needed. In this study, drained triaxial compression tests with the cell pressures from 5 kPa to 300 kPa were performed on dry Jumunjin sand. The results show that the internal friction angle and deformation modulus are dependent on the confining stress. Also, the correlations between them on the dense and loose sand were established.

Evaluation of Spudcan Penetration/Extraction Behavior in Uniform Sand and Clay (모래와 점토 단일지반에서의 스퍼드캔 관입/추출 거동 평가)

  • Yoo, Jin-Kwon;Park, Duhee;Kang, Jaemo
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.17-28
    • /
    • 2017
  • We performed laboratory spudcan penetration and extraction tests considering various geometries. Jumunjin sand, representative standard sand in South Korea, and kaolinite were used for uniform sand and clay layers, respectively. The measured vertical bearing and pull-out capacities were compared to empirical equations for shallow foundations. The results showed good agreement between measured and calculated bearing capacity from laboratory test and previous study at shallow depths. The effect of spudcan geometry is shown to depend on site condition. The influence of a sharp spigot is not significant in clays. The slope of the spudcan surface is shown to influence the pull-out capacity. The characteristics of spudcan penetration and extraction behavior considering various geometries can be a useful reference for determining spudcan geometries.