• 제목/요약/키워드: 양팔 로봇

검색결과 30건 처리시간 0.02초

작업 적합도를 이용한 양팔 로봇의 운동 계획 (Motion Planning of Bimanual Robot Using Bimanual Task Compatibility)

  • 황면중;정성엽;이두용
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.656-662
    • /
    • 2008
  • A cost-function based on manipulability and compatibility is designed to determine assembly motions of two cooperating manipulators. Assembly motions are planned along the direction maximizing performance indices to improve control performance of the two manipulators. This paper proposes bimanual task compatibility by defining cost functions. The proposed cost functions are applied and compared to the bimanual assembly task. The problem is formulated as a constrained optimization considering assembly constraints, position of the workpieces, and kinematics and redundancy of the bimanual robot. The proposed approach is evaluated with simulation of a peg-in-hole assembly with an L-shaped peg and two 3-dof manipulators.

양팔 로봇을 이용한 조립 작업에서 수명을 고려한 최적 운동 계획법 (Optimized Motion Planning Considering the Lifetime for Bimanual Robotic Assembly)

  • 황면중
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.972-976
    • /
    • 2015
  • The objective of this research is to verify the quantitative efficiency of a bimanual robotic task. Bimanual robots can realize dexterous and complicated motions using two cooperating arms. However, its motion planning and control method are not simple for implementing flexible tasks such as assembly. In this paper, the proposed motion planning method is used to find an optimal solution satisfying a designed cost function and constraints with regard to the kinematics and redundancy of the bimanual robot. The simulation results show that the lifetime of the manipulator can be changed by the proposed cost function consisting of angular velocity and angular acceleration of each joint in the same assembly task.

위치기반 비주얼 서보잉을 위한 견실한 위치 추적 및 양팔 로봇의 조작작업에의 응용 (Robust Position Tracking for Position-Based Visual Servoing and Its Application to Dual-Arm Task)

  • 김찬오;최성;정주노;양광웅;김홍석
    • 로봇학회논문지
    • /
    • 제2권2호
    • /
    • pp.129-136
    • /
    • 2007
  • This paper introduces a position-based robust visual servoing method which is developed for operation of a human-like robot with two arms. The proposed visual servoing method utilizes SIFT algorithm for object detection and CAMSHIFT algorithm for object tracking. While the conventional CAMSHIFT has been used mainly for object tracking in a 2D image plane, we extend its usage for object tracking in 3D space, by combining the results of CAMSHIFT for two image plane of a stereo camera. This approach shows a robust and dependable result. Once the robot's task is defined based on the extracted 3D information, the robot is commanded to carry out the task. We conduct several position-based visual servoing tasks and compare performances under different conditions. The results show that the proposed visual tracking algorithm is simple but very effective for position-based visual servoing.

  • PDF

구난 로봇용 양팔 머니퓰레이터 진동 해석 및 설계 (Analysis and Design of the Dual Arm Manipulator for Rescue Robot)

  • 박동일;박찬훈;김두형;경진호
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.235-241
    • /
    • 2016
  • Dual arm manipulators have been developed for the entertainment purpose such as humanoid type or the industrial application such as automatic assembly. Nowadays, there are some issues for applying the dual arm robot system into the various fields. Especially, robots can substitute human and perform the dangerous activity such as search and rescue in the battle field or disaster. In the paper, the dual arm manipulator which can be adapted to the rescue robot with the mobile platform was developed. The kinematic design was proposed for the rescue activity and the required specification was determined through the kinematic analysis and the dynamic analysis in the various conditions. The proposed dual arm manipulator was manufactured based on the vibration analysis result and its performance was proved by the experiment.

조립 공정에서 양팔 로봇의 구조에 따른 작업성 평가 방법 연구 (A Study on the Performance Analysis of the Dual-arm Robot for the Assembly Task)

  • 김기훈;박동일;박종우;김휘수;조영수;정원석
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.164-171
    • /
    • 2022
  • Recently, interest of a dual arm robot which can replace humans is increasing in order to improve the working environment and solve the labor shortage. Various studies related with design and analysis of dual-arm robots have been conducted because dual arm robots can have various kinematic configurations according to the objective task. It is necessary to evaluate the work performance according to various kinematic structures of the dual arm robot to maximize its effectiveness. In the paper, the performance analysis is studied according to the shoulder configuration and the wrist configuration of the dual-arm robot by using main performance indices such as manipulability, condition number, and minimum singular value by assigning proper weight values to each objective motion. Performance analysis for the robotic assembly process is effectively carried out for each representative dual arm robot configuration.

조작자 근육 활성도 기반 양팔 로봇의 임피던스 제어 파라미터 갱신 방법 (Impedance Parameter Update Method for Dual-arm Manipulator based on Operator's Muscle Activation)

  • 백찬렬;차광열;김준식;최영진
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.347-352
    • /
    • 2022
  • The paper presents how to update impedance control parameters for dual-arm manipulators using EMG signals and motions of the operator. Since the hand motions of the dual-arm are modeled to be the mass-spring-damper system in this paper, the impedance parameter update method is an important issue to reflect the operator's force. However, task space inertia to be used as the mass parameter goes to infinity if the manipulator approaches a kinematic singularity. To alleviate this issue, the impedance (stiffness and damping) parameters are divided with a diagonal element of the task space inertia. Also, the stiffness and damping matrices are updated using the normalized EMG signals captured from the operator's forearm. Through this process, the motion of the dual-arm manipulator is more stabilized even though it approaches the kinematic singularity.

교사 보조 로봇 스타일에 따른 아동 반응 분석 (Analysis on Children's Response Depending on Teaching Assistant Robots' Styles)

  • 정재경;최종홍;한정혜
    • 정보교육학회논문지
    • /
    • 제11권2호
    • /
    • pp.195-203
    • /
    • 2007
  • 유비쿼터스 컴퓨팅 기술과 로봇 기술의 발달과 함께 지능형 로봇은 여러 분야에서 활용되고 있고, 점차 그 범위가 확대될 것으로 예견된다. 많은 서비스 로봇들 중에서 교육용 로봇을 이용한 r-Learning의 개념과 함께 다양한 필드 스터디가 이루어지고 있다. 현재 교사 보조 로봇은 곧 실용화를 앞두고 많은 HRI 연구가 요구되는데, 본 연구에서는 로봇의 교수 스타일에 따라 학생의 반응을 살펴보고자 하였다. 이를 위하여 초등학교 6학년 평균키의 양팔이 달린 교사보조 로봇 프로토 타입을 제작하고, 동일한 영어단원에 대하여 두 가지 교수 스타일(명랑, 진지)의 컨텐츠를 개발하여 탑재한 후 초등학생 3학년을 대상으로 흥미도, 성취도, 집중도가 어떻게 다른지를 실험 비교하였다. 실험 결과, 학생의 흥미도는 명랑한 로봇과 함께 수업한 집단이 높았지만, 성취도는 로봇의 스타일과 유의미한 관계가 없었으며, 집중도는 진지한 교수 스타일의 로봇과 함께한 그룹의 시간이 길었다. 이러한 결과는 교사보조 로봇의 컨텐츠를 제작함에 있어, 중요한 가이드라인이 될 것이다.

  • PDF

양팔 로봇의 협조제어를 위한 최적 경로 설계 (Optimal Trajectory Planning for Cooperative Control of Dual-arm Robot)

  • 박치성;하현욱;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.891-897
    • /
    • 2010
  • This paper proposes a cooperative control algorithm for a dual-arms robot which is carrying an object to the desired location. When the dual-arms robot is carrying an object from the start to the goal point, the optimal path in terms of safety, energy, and time needs to be selected among the numerous possible paths. In order to quantify the carrying efficiency of dual-arms, DAMM (Dual Arm Manipulability Measure) has been defined and applied for the decision of the optimal path. The DAMM is defined as the intersection of the manipulability ellipsoids of the dual-arms, while the manipulability measure indicates a relationship between the joint velocity and the Cartesian velocity for each arm. The cost function for achieving the optimal path is defined as the summation of the distance to the goal and inverse of this DAMM, which aims to generate the efficient motion to the goal. It is confirmed that the optimal path planning keeps higher manipulability through the short distance path by using computer simulation. To show the effectiveness of this cooperative control algorithm experimentally, a 5-DOF dual-arm robot with distributed controllers for synchronization control has been developed and used for the experiments.

Multiple Shape Object Handling을 위한 양팔로봇의 성능지수 평가 (Evaluation of Performance Index of Dual-arm manipulator for Multiple Shape Object Handling)

  • 손준배;진호;이장명
    • 로봇학회논문지
    • /
    • 제7권1호
    • /
    • pp.9-19
    • /
    • 2012
  • This paper proposes a performance index for the multiple shape object handling of dual arm manipulator to determine whether a robot is good or not. When the dual-arm manipulator grasps a fixed object and is posed, the dual-arm manipulator should procure a space to freely control the manipulator. As a performance evaluation parameter, each joint torque from current sensor signal is utilized. From the current information, torque and energy for each joint are estimated. In this paper an performance index for an unstructured object is defined by an energy-cost function, and stability analysis for each motion is derived by the maximum force to the object. The maximum force to the object is computed by the inertia of object and acceleration information of end-effector. The acceleration data are derived by the double derivation of each encoder signal. Manipulability measure which implies how efficiently the dual-arm manipulator can move with the grasped object, can be represented by the intersection of the two manipulability ellipsoids for the left and right arms. Effectiveness of the proposed algorithm has been verified through the practical simulations and real experiments.

양팔 로봇을 위한 부분적 비동기 작업 계획 (Partially Asynchronous Task Planning for Dual Arm Manipulators)

  • 정성엽;황면중
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.100-106
    • /
    • 2020
  • In the agricultural field, interests in research using robots for fruit harvesting are continuously increasing. Dual arm manipulators are promising because of its abilities like task-distribution and role-sharing. To operate it efficiently, the task sequence must be planned adequately. In our previous study, a collision-free path planning method based on a genetic algorithm is proposed for dual arm manipulators doing tasks cooperatively. However, in order to simplify the complicated collision-check problem, the movement between tasks of two robots should be synchronized, and thus there is a problem that the robots must wait and resume their movement. In this paper, we propose a heuristic algorithm that can reduce the total time of the optimal solution obtained by using the previously proposed genetic algorithm. It iteratively desynchronizes the task sequence of two robots and reduces the waiting time. For evaluation, the proposed algorithm is applied to the same work as the previous study. As a result, we can obtain a faster solution having 22.57 s than that of the previous study having 24.081 s. It will be further studied to apply the proposed algorithm to the fruit harvesting.