• Title/Summary/Keyword: 양자점 셀룰라 오토마타

Search Result 7, Processing Time 0.029 seconds

Multi-layer Structure Based QCA Half Adder Design Using XOR Gate (XOR 게이트를 이용한 다층구조의 QCA 반가산기 설계)

  • Nam, Ji-hyun;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.291-300
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) is a computing model designed to be similar to cellular automata, and an alternative technology for next generation using high performance and low power consumption. QCA is undergoing various studies with recent experimental results, and it is one of the paradigms of transistors that can solve device density and interconnection problems as nano-unit materials. An XOR gate is a gate that operates so that the result is true when either one of the logic is true. The proposed XOR gate consists of five layers. The first layer consists of OR gates, the third and fifth layers consist of AND gates, and the second and fourth layers are designed as passages in the middle. The half adder consists of an XOR gate and an AND gate. The proposed half adder is designed by adding two cells to the proposed XOR gate. The proposed half adder consists of fewer cells, total area, and clock than the conventional half adder.

Design of XOR Gate Based on QCA Universal Gate Using Rotated Cell (회전된 셀을 이용한 QCA 유니버셜 게이트 기반의 XOR 게이트 설계)

  • Lee, Jin-Seong;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.301-310
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) is an alternative technology for implementing various computation, high performance, and low power consumption digital circuits at nano scale. In this paper, we propose a new universal gate in QCA. By using the universal gate, we propose a novel XOR gate which is reduced time/hardware complexity. The universal gate can be used to construct all other basic logic gates. Meanwhile, the proposed universal gate is designed by basic cells and a rotated cell. The rotated cell of the proposed universal gate is located at the central of 3-input majority gate structure. In this paper, we propose an XOR gate using three universal gates, although more than five 3-input majority gates are used to design an XOR gate using the 3-input majority gate. The proposed XOR gate is superior to the conventional XOR gate in terms of the total area and the consumed clock because the number of gates are reduced.

XOR Gate Based Quantum-Dot Cellular Automata T Flip-flop Using Cell Interaction (셀 간 상호작용을 이용한 XOR 게이트 기반의 양자점 셀룰러 오토마타 T 플립플롭)

  • Yu, Chan-Young;Jeon, Jun-Cheol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.558-563
    • /
    • 2021
  • Quantum-Dot Cellular Automata is a next-generation nanocircular design technology that is drawing attention from many research organizations not only because it is possible to design efficient circuits by overcoming the physical size limitations of existing CMOS circuits, but also because of its energy-efficient features. In this paper, one of the existing digital circuits, T flip-flop circuit, is proposed using QCA. The previously proposed T flip-flops are designed based on the majority gate, so the circuits are complex and have long delays. Therefore, the design of the XOR gate-based T flip-flop using cell interaction reduces circuit complexity and minimizes latency. The proposed circuit is simulated using QCADesigner, and the performance is compared and analyzed with the existing proposed circuits.

Design of QCA Latch Using Three Dimensional Loop Structure (3차원 루프 구조를 이용한 QCA 래치 설계)

  • You, Young-Won;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.227-236
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) consists of nano-scale cells and demands very low power consumption so that it is one of the alternative technologies that can overcome the limits of scaling CMOS technologies. Various circuits on QCA have been researched until these days, a latch required for counter and state control has been proposed as a component of sequential logic circuits. A latch uses a feedback loop to maintain previous state. In QCA, a latch uses a square structure using 4 clocks for feedback loop. Previous latches have been proposed using many cells and clocks in coplanar. In this paper, in order to eliminate these defects, we propose a SR and D latch using multilayer structure on QCA. Proposed three dimensional loop structure is based on multilayer and consists of 3 layers. Each layer has 2 clock differences between layers in order to reduce interference. The proposed latches are analyzed and compared to previous designs.

Design Of Minimized Wiring XOR gate based QCA Half Adder (배선을 최소화한 XOR 게이트 기반의 QCA 반가산기 설계)

  • Nam, Ji-hyun;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.10
    • /
    • pp.895-903
    • /
    • 2017
  • Quantum Cellular Automata(QCA) is one of the proposed techniques as an alternative solution to the fundamental limitations of CMOS. QCA has recently been extensively studied along with experimental results, and is attracting attention as a nano-scale size and low power consumption. Although the XOR gates proposed in the previous paper can be designed using the minimum area and the number of cells, there is a disadvantage that the number of added cells is increased due to the stability and the accuracy of the result. In this paper, we propose a gate that supplement for the drawbacks of existing XOR gates. The XOR gate of this paper reduces the number of cells by arranging AND gate and OR gate with square structure and propose a half-adder by adding two cells that serve as simple inverters using the proposed XOR gate. Also This paper use QCADesginer for input and result accuracy. Therefore, the proposed half-adder is composed of fewer cells and total area compared to the conventional half-adder, which is effective when used in a large circuit or when a half - adder is needed in a small area.

Efficient QCA 2-to-4 Enable Decoder Design Based on 4-Universal Gate (4-유니버셜 게이트 기반 효율적인 QCA 2-to-4 인에이블 디코더 설계)

  • Kim, Tae-Woo;Ryu, Jung Hyuk;Jo, Jeong Hoon;Park, Jong Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.5-7
    • /
    • 2018
  • VLSI(Very large scale integration) 기술을 통한 트랜지스터의 소형화를 통해 CMOS 집적 회로의 성능은 지속적으로 발전해 왔다. 이와 같은 기술 발전에 따라 집적 회로를 구성하는 디지털 논리 요소 또한 진화를 하고 있다. 디코더는 부호화된 정보를 다시 부호화되기 전으로 되돌아가는 처리를 하는 디지털 논리 요소이며 컴퓨터 설계에서 많이 사용되는 핵심 요소이다. 본 논문에서는 양자점 셀룰라 오토마타(Quantum Cellular-Automata, QCA)를 사용하여 인에이블 입력을 가진 2-to-4 디코더를 제안하였다. 4-입력 유니버설 게이트의 하나의 입력을 1로 고정시켜 3-입력 NOR 게이트로 사용하며, 입력 값 X와 입력 값 Y의 중복된 배선 수를 감소시키고 한 배선으로 두 게이트에 입력을 연결하여 디코더의 배선 수와 배선 교차부를 최소화한다. 제안안하는 4-to-2 인에이블 디코더는 기존 디코더보다 셀의 개수와 클럭수를 감소시켜 디코더의 성능을 더 효율적으로 향상시켰다. 이를 통해 고속 회로 설계에 활용 및 높은 성능을 기대 할 수 있으며 QCA 연구에 기여할 수 있을 것으로 전망 한다.

Design of Extendable BCD-EXCESS 3 Code Convertor Using Quantum-Dot Cellular Automata (확장성을 고려한 QCA BCD-3초과 코드 변환기 설계)

  • You, Young-won;Jeon, Jun-cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • Quantum-dot cellular automata (QCA) consists of nano-scale cells and demands very low power consumption so that it is one of the alternative technologies that can overcome the limits of scaling CMOS technologies. Typical BCD-EXCESS 3 code converters using QCA have not considered the scalability so that the architectures are not suitable for a large scale circuit design. Thus, we design a BCD-EXCESS 3 code converter with scalability using QCADesigner and verify the effectiveness by simulation. Our structure have reduced 32 gates and 7% of garbage space rate compare with typical URG BCD-EXCESS 3 code converter. Also, 1 clock is only needed for circuit expansion of our structure though typical QCA BCD-EXCESS 3 code converter demands 7 clocks.