• Title/Summary/Keyword: 양이온교환능력

Search Result 75, Processing Time 0.021 seconds

Synthesis of zeolite with reaction temperature and alkali concentration from coal bottom ash (화력발전소 바닥재로부터 합성된 제올라이트의 반응온도와 알칼리 농도에 따른 상변화에 대한 연구)

  • Jun So-Youn;Han Gi-Chun;Ahn Ji-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.204-210
    • /
    • 2004
  • Though the recycling rate of coal fly ash generated from domestic thermoelectric power plants is gradually increased, at present, the most amount of coal bottom ash is disposed by a landfill instead of recycling. Therefore, to reuse a coal bottom ash as high-value materials the synthesis of zeolite made from a coal bottom ash was investigated in this study. NaPl, hydroxy-sodalite and tobermorite were produced through the alkaline hydrothermal reaction of pulvelized bottom ash at various temperatures; 80, 120, $150^{\circ}C$, and the concentration of NaOH at the range from 1 to 5 M. Especially, NaPl with excellent cation exchange capability had a high crystallinity at ${\leq}2$ M NaOH and ${\leq}120^{\circ}C$.

매립장 주변 대수층 매질특성과 수질의 상관관계 연구

  • O In-Suk;Go Gyeong-Seok;Gu Min-Ho;An Ju-Seong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.387-390
    • /
    • 2006
  • 매립장주변의 대수층 특성과 수리지화학적 특성과의 상관관계 분석은 매립장 환경 위해 요인을 평가하는데 중요한 역할을 하며 이를 위해 생활쓰레기 매립장인 금산 매립장을 대상으로 연구를 수행하였다. 대수층 매질 특성을 파악하기 위해 토양시료를 채취하여 중금속 성분 및 pH, 전기전도도, 용존유기탄소, 양이온교환능력, 유기물함량, 토양 입도분석을 수행하였고, 수리지화학적 특성 파악을 위해 수질검층 및 지하수 시료를 분석하여 매립지역의 수직 및 수평적인 분포 특성을 파악하였다. 대수층의 토양특성과 지하수 수질특성의 비교분석 결과 침출수 집수정을 기점으로 침출수의 영향을 받은 관측정의 전기전도도(EC) 측정값이 배경 지하수에 비해 상대적으로 높은 값을 보여 주었다. 입도분석 결과 상부 표토에 가까운 50cm 이내의 토양은 농경의 영향으로 심부보다 상대적으로 실트질 토양이 많고 이보다. 심부의 토양은 사질 토양으로 되어 있었다. 이러한 투수성이 좋은 사질 토양은 지하수의 이동을 비교적 쉽게 유도하기 때문에 매립장으로부터 침출수가 누출되었을 때 지하수 흐름을 따라 빠르게 이동할 수 있는 통로로 작용될 것으로 판단된다.

  • PDF

Soil Characteristics of the Saprolite Piled Upland Fields at Highland in Gangwon Province (강원도 고랭지의 석비레 성토지 토양 특성)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Yang, Jae-E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.66-73
    • /
    • 2004
  • As one of the typical farming practices in the sloped upland in Pyeongchang and Hongcheon area, application of piling with coarse saprolite materials has been practiced by farmers for several reasons such as reduction of damage by monocropping, better development of plant roots, and better drainage. However, adverse effect on application of coarse saprolite soil materials to environmental aspects should not be ignored. Therefore, this research was conducted to evaluate the physicochemical properties of coarse saprolite materials in upland fields in Pyeongchang area. According to particle size distribution of coarse saprolite materials, averaged gravel contents for Pyeongchang and Hongcheon county were 16.7 and 25.3%, respectively. There was no significant difference in gravel contents by soil depth, and CV values for each particle size ranged from 20 to 40%, which implied that application of coarse material with similar properties. When we compared CEC values of dressed soil with or without considering gravel content, CEC values decreased as increasing gravel contents. The penetration resistances were 0.04-7.48 MPa at the 0 to 10 cm surface soil, and 0.10 to 8.80 MPa at the depth below 11 cm. The bulk density of the soil was $1.15g\;cm^{-3}$ at the surface soil and 1.29 to $1.35g\;cm^{-3}$ at the soil depth below 10 cm. The organic matter content, cation exchange capacity, and avaliable $P_2O_5$ concentrations of soil in upland where piling with saprolite materials of Pyeongchang area applied were $12.4g\;kg^{-1}$, $7.1cmol_c\;kg^{-1}$, and $526mg\;kg^{-1}$, respectively. Cation exchange capacity was lower than that of averaged Korean upland soil, while available $P_2O_5$ concentration was relatively higher than that of averaged Korean upland, which indicated high input of various fertilizers.

Physicochemical Properties and Distribution of Heavy Metals in Stream Sediments of the Daejeon Area (대전지역 주요하천 하상퇴적물의 물리화학적 특성 및 중금속 분포)

  • Jeong, Chan-Ho;Lee, Sang-Gu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.259-264
    • /
    • 2006
  • This work carried out to analyze the physicochemical properties and investigate the assessment of heavy metal contamination of stream sediments of the Yudeung and the Gab streams in the Daejeon area. The pH of stream sediments of the Yudeung stream shows the range of weak acid and weak alkaline. Most of stream sediments contain about 80% sand grain and have low water and cation retention capacity. Hence the stream sediments are not suitable fur various plans to grow up. The analysis of heavy metals in the stream sediments shows that the concentration of Pb, Cr and Cd increases from upstream to down stream. It is likely that the trend has a relationship with the water. Contamination of stream water. The authors recommend that clay materials be replenished in the stream sediments to increase the self-purification capacity and to make the suitable condition for growing up of various plants, and that water quality of the stream which can Influence into the contamination of stream sediments be monitored.

Adsorption Properties of U, Th, Ce and Eu by Myogi Bentonite Occurring in Japan (일본 묘기광산 벤토나이트의 물리화학적 성질 및 U, Th, Ce 및 Eu 흡착특성)

  • Song Min-Sub;Koh Sang-Mo;Kim Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.183-194
    • /
    • 2005
  • The mineralogical, physicochemical and thermal properties of the Myogi bentonite occurring in Japan were measured. A adsorption properties of U, Th, Ce and Eu ions on the Myogi bentonite were also investigated in different solution concentrations and pH conditions. The Myogi bentonite showed a strong alkaline character (pH 10.4), very high swelling, viscosity property and CEC, and a slow flocculation behavior due to the strong hydrophilic property. By the thermal analysis, the dehydroxylation of crystal water in bulk and clay fractions of the Myogi bentonite occur at $591^{\circ}C$ and $658^{\circ}C$, respectively, The adsorption experiments of ions such as U, Th, Ce and Eu were conducted for 0.2 g bentonites with 20mL solutions of various concentrations and different pH conditions with pH 3, 5, 7, 9, and 11. As a result, the Myogi bentonite showed excellent adsorption capacities for Ce, Th and Eu ions, whereas U ion showed very low adsorption capacity. Generally, Ce, Th and Eu ions showed the similar adsorption properties for the different concentrated solutions and pH conditions. These adsorption properties seem to be affected by the formation of various forms of chemical species and precipitation as well as ionic exchange reaction and surface adsorptions on smectite. Some associated zeolite minerals perhaps have some effects on the adsorption of U, Th, Ce and Eu on Myogi bentonite.

The Effects on the Atterberg Limits of Clays with Heat Treatment (열처리에 따른 점토의 애터버그 한계 영향)

  • Min, Tuk-Ki;Hwang, Kwang-Mo;Lee, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.29-34
    • /
    • 2007
  • This study examines the effects of heat treatment under laboratory conditions for mixtures of two types of clay (kaolinite and montmorillonite). Clay samples were burned with different temperatures ranging from $100^{\circ}C\;to\;500^{\circ}C$. The Atterberg limits such as liquid and plastic limits were influenced with heat treatment. According to the experimental results, the liquid limits slightly decreased between $100^{\circ}C\;to\;300^{\circ}C$, whereas rapid decreases were observed after $300^{\circ}C$. The plastic limits did not show noticeable differences in the interval $100^{\circ}C\;to\;400^{\circ}C$. But the clay samples showed non plastic behavior at $500^{\circ}C$. The amount of NaCl was getting decreased with temperature. It also revealed that the pH values were also influenced with heat treatment, and the cation exchange capacity (C.E.C) values decreased with temperature.

Continuous Separation of Lysozyme from Egg White by Ion Exchange Column Chromatography (이온교환 칼럼 크로마토그래피를 이용한 난백에서 Lysozyme의 연속추출)

  • Park, Seong-Joon;Kim, Hyeon-Seok;Kim, Hyean-Wee;Ahn, Tae-Hoe;Park, Ki-Moon;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.711-715
    • /
    • 1990
  • Continuous column chromatographic separation of lysozyme from egg white was investigated. A weak acid type cation exchange resin, Duolite C-464, was used because of high lysozyme recovery and ease of column operation in this experiment. The resin was equilibrated at $pH\;7.9{\pm}0.1$ in Na+form. Continuous lysozyme separation was processed by repeating cycles(one cycle : resin equilibration, flow egg white, rinse, lysozyme elution) in automated preparative Liquid Chromatography(LC) system(column size ; i.d. 50 mm, resin bed volumn ; 1020 ml). At comparison of UV levels in rinse end point and elution end point of every cycle, the UV levels of rinse end point are maintained below 30% for 19 cycles and that of elution end point are also maintained below 30% for 17 cycles, stably, but was increased above 50% after 18 cycle. That indicated the eluting ability of lysozyme was reduced conspicuously after 18 cycle in continuous cycling process. The recovery of lysozyme was maintained above 90% from one to 17 cycle, but was decreased to 72% and 65% in 18 cycle and 19 cycle, respectively.

  • PDF

Antimicrobial Effect of Metal tons Substitution to HAp, Zeolite (HAp, Zeolite에 여러 금속 Ion 치환시 나타나는 항균효과)

  • Kim, Yun-Jong;Kim, Taek-Nam;Kim, Sang-Bae;Jo, Seong-Baek;Jo, Geon-Jun;Lee, Tae-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.120-125
    • /
    • 2001
  • Generally, hydroxyapatite(HAp), zeolite, carbon molecular sieve , activated carbon and alumina are used as heavy metal ions adsorption materials. Among those adsorption materials, HAp which has good positive ion-exchange ability with metal ion, and zeolite are utilized in wastewater treatment. Most of water pollutions are caused by hazardous heavy metals ions as well as bacteria in waste water. In this study, a adsorption materials (HAP and zeolite) are ion-exchanged with a well known antimicrobial metal ions, such as $Ag^+,\;Cu^{2+},\;and\;Zn^{2+}$, in order to give a adsorption of heavy metal ions and a killing effects of bacteria. The antimicrobial effects of adsorption materials are observed using by E. Coli. The results show that there is a complete antimicrobial effect in the adsorption materials with $Ag^+$ at the concentration of $1{\times}10^{-4}$cell/$m\ell$ of E. Coli until 24 hours. However, there is not good antimicrobial effects in the adsorption materials with $Cu^{2+},\;and\;Zn^{2+}$ substitution. Feng et. al. showed the denaturation effects of silver ions which induces the condensed DNA molecules and losing their replication abilities.

  • PDF

Evaluation of the Removal Characteristics of Pollutants in Storm Runoff Depending on the Media Properties (여재 특성에 따른 강우 유출수 내 오염물질 제거특성 평가)

  • Kim, Tae-Gyun;Cho, Kang-Woo;Song, Kyung-Guen;Yoon, Min-Hyuk;Ahn, Kyu-Hong;Hong, Sung-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.483-490
    • /
    • 2009
  • The aims of this study were to evaluate the removal efficiency for various pollutants in urban storm runoff by a filtration device, and to determine design parameters depending on filter media properties. Appropriate selection of filter media will affect the size and life time of the filtration device. Sets of column tests were performed in order to evaluate the removal efficiency by perlite and a synthetic resin. An investigation of surface properties including CEC (cation exchange capacity) and zeta-potential suggested that the perlite had a superior adsorption capability for cationic pollutants. TCODcr and turbidity were analyzed to investigate the removal characteristic of particulate pollutant. In both columns, the particles in the collected storm runoff was almost completely capture with a small EBCT (empty bed contact time) of 2.5 minutes. Complete clogging at the EBCT of 2.5 minutes occurred after 630 minutes in the perlite column and 810 minutes in the resin column. The removal efficiency of TCODcr and turbidity at the EBCT of 2.5 minutes decreased to below 70% due to an wall effect. The removal efficiency for dissolved pollutant (SCODcr) was negligible due to the insufficient contact time for adsorption. The removal of heavy metals (Cu, Zn, Pb) was mostly ascribed to the filtration of particles containing metals, since the relationship between CEC and the removal efficiency was not apparent. The result of this study would be valuable for the application of filtration device to control of urban storm runoff.

Mineralogical Properties and Paragenesis of H-smectite (H-스멕타이트의 광물학적 특성과 생성관계)

  • Noh, Jin-Hwan;Hong, Jin-Sung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.377-393
    • /
    • 2010
  • Pumiceous tuffs occurring in the Beomgockri Group are examined applied-mineralogical characteristics and their controling factors to evaluate their potentials as the adsorption-functional mineral resources. The pumiceous tuffs are diagenetically altered to low-grade zeolitcs and bentonites in the Janggi area. Compositional specialty due to the presence of pumice fragments induces the altered tuffs to exhibit the characteristic adsorption property combined with cation exchange capacity, specific surface area, and acidic pH. Unusual lower pH in the adsorption-functional mineral substances is turned out to be originated from the presence of H-smectite having $H^+$ in the interlayer site of the sheet structure. On account of disordered crystallinity resulting from the exchanged $H^+$ in the interlayer site, the smectite commonly forms crenulated edges in the planar crystal form and exhibits characteristic X-ray diffraction patterns showing comparatively lower intensities of basal spacings including (001) peak than conventional Ca-smectite. Based on the interpretation of paragenetic relations and precursor of the H-smectite, a genetic model of the peculiar clay mineral was proposed. The smectite formation may be facilitated resulting from the precipitation of opal-CT at decreasing pH condition caused by the release of H+ during diagenetic alteration of pumice fragments. Because of the acidic smectite, the low-grade mineral resources from the Beomgockri Group may be applicable to the adsorption industry as the raw materials of acid clays and bed-soil.