• Title/Summary/Keyword: 양성자치료

Search Result 33, Processing Time 0.023 seconds

Proton Therapy for Head and Neck Cancer: Current Clinical Applications and Future Direction (두경부암의 양성자치료: 현재의 임상 적용 및 발전 방향)

  • Oh, Dongryul
    • Korean Journal of Head & Neck Oncology
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Intensity-modulated radiation therapy (IMRT) using X-rays is a standard technique implemented for treating head and neck cancer (HN C). Compared to 3D conformal RT, IMRT can significantly reduce the radiation dose to surrounding normal tissues by using a highly conformal dose to the tumor. Proton therapy is a type of RT that uses positively charged particles named protons. Proton therapy has a unique energy deposit (i.e., Bragg peak) and greater biological effectiveness than that of therapy using X-rays. These inherent properties of proton therapy make the technique advantageous for HNC treatment. Recently, advanced techniques such as intensity-modulated proton therapy have further decreased the dose to normal organs with a higher conformal dose to the tumor. The usage of proton therapy for HNC is becoming widespread as the number of operational proton therapy centers has increased worldwide. This paper aims to present the current clinical evidence of proton therapy utility to HNC clinicians through a literature review. It also discusses the challenges associated with proton therapy and prospective development of the technique.

Study on Optimization of Detection System of Prompt Gamma Distribution for Proton Dose Verification (양성자 선량 분포 검증을 위한 즉발감마선 분포측정 장치 최적화 연구)

  • Lee, Han Rim;Min, Chul Hee;Park, Jong Hoon;Kim, Seong Hoon;Kim, Chan Hyeong
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.162-168
    • /
    • 2012
  • In proton therapy, in vivo dose verification is one of the most important parts to fully utilize characteristics of proton dose distribution concentrating high dose with steep gradient and guarantee the patient safety. Currently, in order to image the proton dose distribution, a prompt gamma distribution detection system, which consists of an array of multiple CsI(Tl) scintillation detectors in the vertical direction, a collimator, and a multi-channel DAQ system is under development. In the present study, the optimal design of prompt gamma distribution detection system was studied by Monte Carlo simulations using the MCNPX code. For effective measurement of high-energy prompt gammas with enough imaging resolution, the dimensions of the CsI(Tl) scintillator was determined to be $6{\times}6{\times}50mm^3$. In order to maximize the detection efficiency for prompt gammas while minimizing the contribution of background gammas generated by neutron captures, the hole size and the length of the collimator were optimized as $6{\times}6mm^2$ and 150 mm, respectively. Finally, the performance of the detection system optimized in the present study was predicted by Monte Carlo simulations for a 150 MeV proton beam. Our result shows that the detection system in the optimal dimensions can effectively measure the 2D prompt gamma distribution and determine the beam range within 1 mm errors for 150 MeV proton beam.

Stopping Power Ratio Estimation Method Based on Dual-energy Computed Tomography Denoising Images for Proton Radiotherapy Planning (양성자치료계획을 위한 이중에너지 전산화단층촬영 잡음 제거 영상 기반 저지능비 추정 방법)

  • Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.207-213
    • /
    • 2023
  • Computed tomography (CT) images are used as the basis for proton Bragg peak position estimation and treatment plan simulation. During the Hounsfield Unit (HU) based proton stopping power ratio (SPR) estimation, small differences in the patient's density and elemental composition lead to uncertainty in the Bragg peak positions along the path of the proton beam. In this study, we investigated the potential of dual-energy computed tomography image-based proton SPRs prediction accuracy to reduce the uncertainty of Bragg peak position prediction. Single- and dual-energy images of an electron density phantom (CIRS Model 062M electron density phantom, CIRS Inc., Norfolk, VA, USA) were acquired using a computed tomography system (Somatom Definition AS, Siemens Health Care, Forchheim, Germany) to estimate the SPRs of the proton beam. To validate the method, it was compared to the SPRs estimated from standard data provided by the National Institute of Standards and Technology (NIST). The results show that the dual-energy image-based method has the potential to improve accuracy in predicting the SPRs of proton beams, and it is expected that further improvements in predicting the position of the proton's Bragg peak will be possible if a wider variety of substitutes with different densities and elemental compositions of the human body are used to predict the SPRs.

DNA Repair Characteristics of MRC-5 and SK-N-SH Irradiated with Proton Beam (양성자빔 조사에 따른 MRC-5와 SK-N-SH의 DNA 손상 후 회복 특성)

  • Choi, Eun-Ae;Lee, Bong-Soo;Cho, Young-Ho
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2011
  • The purpose of this study is to compare DNA repair characteristics of normal fibroblast cell (MRC-5) and neuroblastoma cell (SK-N-SH) induced by proton beam. Cells were irradiated with 2Gy, 5Gy and 8Gy proton beam. The rate of DNA rejoining was measured by alkaline version of the comet assay. After a repair time, tail moment was measured again. The tail moment of MRC-5 was lower than SK-N-SH. However, after 8Gy of exposure, the tail moment of MRC-5 was measured as 50.320223.17155 which represents dangerous level of DNA damage. The cells were repaired practically within 25 hours after 2 and 5Gy of exposure while they were not fully recovered after 8Gy of exposure. Especially, tail moment of MRC-5 after 25 hours was 18.15364.42849. In the distal declining edge of SOBP, the RBE value is increased by high LET. The RBE differences of SOBP in high-dose were greater than low-dose. After the high-dose exposure, MRC-5 of normal fibroblast cell could lead to lasting DNA damage as shown in this study. In conclusion, we has to pay special attention when the region of the treatment volume is close to sensitive tissues.

발명하는 사람들-제49호

  • Han, Mi-Yeong
    • The Inventors News
    • /
    • no.49
    • /
    • pp.1-16
    • /
    • 2006
  • 미래에디슨의 잔치, '제19회 대한민국 학생발명 전시회'/특허청 홍보대사, 탤런트 이보영 선정/시계 분야, 이제는 디자인과 기능이 승부 결정/시원한 이름의 아이스크림 상표 크게 늘어/지긋지긋한 스팸메일을 막아라/RFID 산업 추진력은 '특허'/건강 마사지기, 특허출원 증가/한미영 한국여성발명협회 회장, 여성 발명가 양성 위한 강의/심사시간 단축으로 특허받기 더욱 쉬워져/발명꿈나무 축제, '국제청소년 발명전'/고객 만족도 향상 위한 열린 특허판례 서비스/특허 연차등록표 편리하게 납부/특산품 명품화 위한 지원책 마련/특허청, 정보보호마크 획득/창원 '여성발명 창의교실' 성황리에 마쳐/특허기술상, 개인 발명가들의 발명품 눈에 띄어/특허청, 삼성전자와 업무협약(MOU)체결/특허수수료, 특허청 홈페이지에서 정정 가능/철도의 소음, 침목 기술로 잡는다/전난 특허기술, 민간 이전에 성공/'누이 좋고 매부좋은' 개정 직무발명제도/여성경제인의 날에 협회 회원 2인, 표창수상/상표명도 슬림화 시대로 가고 있다/'2006년 특허기술사업화 성공사례 발표회' 개최/중소기업청, 참신한 아이디어 적극 지원/역사 속의 발명품/하루 10분 발명교실/특허Q&A/안현정 비단향꽃무 대표/버버리, 체크무늬 지키기에 나섰다/나주배와 캠벨포도로 '고기능성 웰빙식초' 개발/히트 상품속에는 아이디어가 가득/아이디어 착상 및 발명기법/여성발명 주변에서 중심으로/나이토의 린나이 버너/즐거움 주는 '명랑 쾌활 휠체어맨'/미국 법원, 하이닉스 배상금 1/3로 경감/특허청, '지방자치단체 브랜드 지원사업 백서' 발간/DMB 특허료에 국내 기업들 눈뜨고 당한다/군산시, 주정차금지블럭. 차선경계블럭 특허출원/한국여성발명협회 회원사 가이드/

  • PDF

Analysis of Scatter Ray Distribution Using GEANT4-GATE Simulation and Effectiveness of Silicone Pad in Digital Mammography (디지털유방촬영에서 Geant4-GATE를 이용한 산란선의 영향분석과 감소방안에 관한 연구)

  • Kim, Myeong-soo;Kim, Young-kuen;Jang, Young-Il
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.175-180
    • /
    • 2019
  • In this study, we have researched the effectiveness of silicone pad. A distribution of scatter ray in mammography was evaluated using Monte-Carlo (MC) simulation technique and then a silicone pad was applied to remove the scatter ray for improving image quality. Molybdenum target and Molybdenum filter combination made a difference of 59.8% to a number of photon at 17.5 keV. On the other hand, Tungsten target and Rhodium filter showed a variation of 24.5% at 20 keV. Mean 68 of SNR was increased in Selenia and mean 1.04 of SNR was raised in Senographe. Silicone pad was significantly effective to reduce the scatter ray that was generated by primary X-ray. It can decrease an absorption rate of scatter ray to patient body and whilst it improve the image quality from increasing SNR.

A Study on the Measurement of the Relative Nuclear Reaction Cross-Section of the natW(p,xn)176Re Reaction using 100 MeV Proton (100 MeV 양성자를 이용한 natW(p,xn)176Re 핵반응의 상대 핵반응단면적 측정에 대한 연구)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.257-263
    • /
    • 2021
  • This study derives the relative cross-section for the natW(p,xn)176Re nuclear reaction by measuring the gamma rays generated from the nuclear reaction with natural tungsten using a 100 MeV linear accelerator of the Korea Multi-purpose Accelerator Complex in the Korea Atomic Energy Research Institute. In general, research on isotopes with a short half-life always shows a tendency that the intensity of radioactivity decreases rapidly within a short period of time, making it very difficult to measure itself. In particular, 176Re is one of the relatively short radionuclides with a half-life of 5.3 minutes. In this study, 109.08 keV gamma rays generated from the 176Re isotope having such a short half-life were measured using a high-purity Ge detector(HPGe detector). The obtained relative measurements were the results in the 8 to 14 MeV proton energy domain published by Richard G. in 1967, and the TENDL-2019 value, which was the result of A. J. Koning in 2019, which evaluated the nuclear reaction cross-section by calculation based on this comparative analysis was performed. The results of this study are expected to be usefully applied to the design of nuclear fusion reactor which is known as future energy sources, elements ratio for the nuclear synthesis of astrophysics.

Comparison of Intensity-modulated Radiation Therapy (IMRT), Uniform Scanning Proton Therapy (USPT), and Intensity-modulated Proton Therapy (IMPT) for Prostate Cancer: A Treatment Planning Study (전립선 암 환자의 IMRT, USPT, 및 IMPT 기법에 따른 치료효과 비교)

  • Son, Kihong;Cho, Seungryong;Kim, Jin Sung;Han, Youngyih;Ju, Sang Gyu;Ahn, Sung Hwan;Shin, Eunhyuk;Shin, Jung Suk;Park, Won;Pyo, Hongryul;Choi, Doo Ho
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.154-161
    • /
    • 2013
  • This study assessed compared photon and proton treatment techniques, such as intensity modulated radiation therapy (IMRT), uniform scanning proton therapy (USPT), and intensity modulated proton therapy (IMPT), for a total of 10 prostate cancers. All treatment plans delivered 70 Gy to 95% of the planned target volume in 28 fractions. IMRT plans had 7 fields for the step and shoot technique, while USPT and IMPT plans employed two equally weighted, parallel-opposed lateral fields to deliver the prescribed dose to the planned target. Inverse planning was then incorporated to optimize IMPT. The homogeneity index (HI) and conformity index (CI) for the target and the normal tissue complication probability (NTCP) for organ at risk (OAR) were calculated. Although the mean HI and CI for target were not significantly different for each treatment techniques, the NTCP of the rectum was 2.233, 3.326, and 1.707 for IMRT, USPT, and IMPT, respectively. The NTCP of the bladder was 0.008, 0.003, and 0.002 respectively. The NTCP values at the rectum and bladder were significantly lower using IMPT. Our study shows that using proton therapy, particularly IMPT, to treat prostate cancer could be beneficial compared to 7-field IMRT with similar target coverage. Given these results, radiotherapy using protons, particularly optimized IMPT, is a worthwhile treatment option for prostate cancer.

Dose comparison according to Smooth Thickness application of Range compensator during proton therapy for brain tumor patient (뇌종양 환자의 양성자 치료 시 Range Compensator의 Smooth Thickness 적용에 따른 선량비교)

  • Kim, Tae Woan;Kim, Dae Woong;Kim, Jae Weon;Jeong, Kyeong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.139-148
    • /
    • 2016
  • Purpose : Range Compensator used for proton therapy compensates the proton beam dose which delivers to the normal tissues according to the Target's Distal Margin dose. We are going to check the improvement of dose on the target part by comparing the dose of PTV and OAR according to applying in different method of Smooth Thickness of Range Compensator which is used in brain tumor therapy. Materials and Methods : For 10 brain tumor patients taking proton therapy in National Cancer Center, Apply Smooth Thickness applied in Range Compensator in order from one to five by using Compensator Editor of Eclipse Proton Planning System(Version 10.0, Varian, USA). The therapy plan algorithm used Proton Convolution Superposition(version 8.1.20 or 10.0.28), and we compared Dmax, Dmin, Homogeneity Index, Conformity Index and OAR dose around tumor by applying Smooth Thickness in phase. Results : When Smooth Thickness was applied from one to five, the Dmax of PTV was decreased max 4.3%, minimum at 0.8 and average of 1.81%. Dmin increased max 1.8%, min 1.8% and average. Difference between max dose and minimum dose decreased at max 5.9% min 1.4% and average 2.6%. Homogeneity Index decreased average of 0.018 and Conformity Index didn't had a meaningful change. OAR dose decreased in Brain Stem at max 1.6%, min 0.1% and average 0.6% and in Optic Chiasm max 1.3%, min 0.3%, and average 0.5%. However, patient C and patient E had an increase each 0.3% and 0.6%. Additionally, in Rt. Optic Nerve, there was a decrease at max 1.5%, min 0.3%, and average 0.8%, however, patient B had 0.1% increase. In Lt. Optic Nerve, there was a decrease at max 1.8%, min 0.3%, and average 0.7%, however, patient H had 0.4 increase. Conclusion : As Smooth Thickness of Range Compensator which is used as the proton treatment for brain tumor patients is applied in stages, the resolution of Compensator increased and as a result the most optimized amount of proton beam dose can be delivered. This is considered to be able to irradiate the equal amount at PTV and reduce the unnecessary dose applied at OAR to reduce the side effects.

  • PDF

Dosimetric Influence of Implanted Gold Markers in Proton Therapy for Prostate Cancer (전립선암에 대한 양성자치료에서 금마커에 의한 방사선 선량분포의 영향)

  • Kwak, Jung-Won;Shin, Jung-Wook;Kim, Jin-Sung;Park, Sung-Yong;Shin, Dong-Ho;Yoon, Myong-Geun;Park, So-Ah;Kim, Dong-Wook;Lim, Young-Gyeung;Lee, Se-Byeong
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 2010
  • This study examined the dosimetric influence of implanted gold markers in proton therapy and the effects of their positions in the spread-out Bragg peak (SOBP) proton beam. The implanted cylindrical gold markers were 3 mm long and 1.2 mm in diameter. The dosimetric influence of the gold markers was determined with markers at various locations in a proton-beam field. Spatial dose distributions were measured using a three-dimensional moving water phantom and a stereotactic diode detector with an effective diameter of 0.5 mm. Also, a film dosimetry was performed using Gafchromic External Beam Treatment (EBT) film. The GEANT4 simulation toolkit was used for Monte-Carlo simulations to confirm the measurements and to construct the dose-volume histogram with implanting markers. Motion data were obtained from the portal images of 10 patients to investigate the effect of organ motions on the dosimetric influence of markers in the presence of a rectal balloon. The underdosed volume due to a single gold marker, in which the dose was less than 95% of a prescribed amount, was 0.15 cc. The underdosed volume due to the presence of a gold marker is much smaller than the target volume. However, the underdosed volume is inside the gross tumor volume and is not smeared out due to translational prostate motions. The positions of gold markers and the conditions of the proton-beam field give different impacts on the dose distribution of a target with implanted gold markers, and should be considered in all clinical proton-based therapies.