• Title/Summary/Keyword: 양극산화피막

Search Result 128, Processing Time 0.023 seconds

Effect of Anodizing Current Density on Anti-Corrosion Characteristics for Al2O3 Oxide Film (Al2O3 산화 피막의 내식성에 미치는 양극산화 전류밀도의 영향)

  • Lee, Seung-Jun;Jang, Seok-Gi;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.153-153
    • /
    • 2016
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the sea water upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Afterward, the irregular oxide film that was created in the first step surface modification was removed. For the second step surface modification process (identical to the step 1), etching was performed using mixture of chromic acid (1.8 wt.%) and phosphoric acid (6 wt.%) at $60^{\circ}C$ temperature for 30 minutes. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification presented a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Influence of Anodic Oxidation Film Formed on Titanium onto Cell Attachment and Proliferation (양극 산화에 의해 티타늄 표면에 형성된 산화 피막이 세포 부착 및 성장에 미치는 영향)

  • Noh, Se-Ra;Lee, Yong-Ryeol;Song, Ho-Jun;Park, Yeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.606-613
    • /
    • 2006
  • This study was purposed to evaluate the influence of anodically oxidized film on titanium (Ti) onto MG-63 osteoblast-like cell attachment and activity. Only scratch lines created by polishing were seen in ASR and ANO-1 groups. About $1.5{\mu}m$-thick homogeneous oxide film which has pores of about $0.5{\mu}m$ diameter were formed in ANO-12. The crystalline structure of the oxide films formed by anodization in phosphoric acid electrolyte was $TiP_2O_7$. The total protein amounts of ANO-1 and ANO-12 groups showed higher values of maximum protein amount than that of AS-R group. At 3 days of incubation, total protein amount showed higher value in ANO-2 when comparing to that of AS-R (p<0.05). Based on the results of ALPase activity test, the degree of MG-63 cell differentiation for initial mineralization matrix formation was similar. For all the test groups after 1 day of incubation, MG-63 cells grew healthily in mono-layer with dendritic extensions. After incubation for 3 days, the specimen surfaces were covered more densely by cells, and numerous micro filaments were extruding to the extracellular matrix.

Formation of Aluminum Etch Tunnel Pits with Uniform Distribution Using UV-curable Epoxy Mask (UV-감응형 에폭시 마스크를 사용한 균일한 분포의 터널형 알루미늄 에치 피트 형성 연구)

  • Park, Changhyun;Yoo, Hyeonseok;Lee, Junsu;Kim, Kyungmin;Kim, Youngmin;Choi, Jinsub;Tak, Yongsug
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.562-565
    • /
    • 2013
  • The high purity Al foil, which has an enlarged surface area by electrochemical etching process, has been used as an anode for an aluminum electrolytic capacitor. Etch pits are randomly distributed on the surface because of the existence of surface irregularities such as impurity and random nucleation of pits. Even though a large surface area was formed on the tunnel-etched Al, its applications to various fields were limited due to non-uniform tunnel morphologies. In this work, the selective electrochemical etching of aluminum was carried out by using a patterned mask fabricated by photolithographic method. The formation of etch pits with uniform distribution has been demonstrated by the optimization of experimental conditions such as current density and etching solution temperature.

Trifluoropropyltrimethoxysilane as an Electrolyte Additive to Enhance the Cycling Performances of Lithium-Ion Cells (Trifluoropropyltrimethoxysilane 전해질 첨가제를 이용한 리튬이온전지의 싸이클 특성 향상)

  • Shin, Won-Kyung;Park, Se-Mi;Kim, Dong-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.156-163
    • /
    • 2014
  • In this study, we tried to improve the cycling performance of lithium-ion batteries by suppressing decomposition of the electrolyte solution containing fluorsilane-based additive. Trifluoropropyltrimethoxysilane was electrochemically oxidized and reduced prior to the decomposition of the liquid electrolyte composed of lithium salt and carbonate-based organic solvent. Thus, the stable solid electrolyte interphase (SEI) layer on both negative electrode and positive electrode was formed, and it was confirmed that the cycling performance of lithium-ion batteries assembled with electrolyte solution containing 5 wt.% trifluoropropyltrimethoxysilane was the mostly enhanced. The products formed on electrodes were analyzed by the SEM and XPS analysis, and it was demonstrated that trifluoropropyltrimethoxysilane can be one of the promising SEI-forming additives.

Chemical States and Microstructures of Anodic TiO2 Layers (양극산화 TiO2 피막의 화학 결합상태와 미세구조)

  • Jang, J.M.;Oh, H.J.;Lee, J.H.;Joo, J.H.;Chi, C.S.
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.528-532
    • /
    • 2002
  • Anodic $TiO_2$film on Ti substrate was fabricated at 180V in sulfuric acid solutions containing phosphoric acid and hydrogen peroxide. Effects of the anodizing conditions on the morphology of the oxide layers, and chemical states of the component elements of the layers were studied primarily using SEM, XRD, AFM, and XPS. The pores in the oxide layer was not uniform in size, shape, and growth direction particularly near the interface between the substrate and the oxide layer, compared with those of the surface layer. The formation of irregular type of pores seemed to be attributed to spark discharge phenomena which heavily occurred during increasing the anodic voltage. The pore diameter and the cell size increased, and the number of cells per unit area decreased with the increasing time. From the XPS results, it was shown that component elements of the electrolytes, P and S, existed in the chemical states of $PO_4^{-3}$ , $P_2$$O_{5}$, $SO_4^{-2}$ , $SO_3^{-2}$ , P, S, etc., which were penetrated from the electrolytes into the oxide layer during anodization.

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

The Method of Exposure Determination for Digital Infrared Photography in Forensic Field (법과학 분야에서 디지털 적외선 사진을 위한 노출 결정 방법)

  • Kim, Sang-Ki;Kim, Yoo-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.181-191
    • /
    • 2014
  • In the past, making IR photography needed somewhat complicated process, so its application fields were limited. However, it has become easy to make IR photography with advanced digital technology, so it is expected that the fields of IR photography and existing limit due to difficult making process will be expanded. Therefore, in this study, it is decided that the need of IR standard chart which allows us to manage exposure and tone of IR photography for scientific purpose will increase. Two methods were used to make IR standard chart. First method is to use aluminum. When aluminum has oxide coating through anodic oxidation, it has high durability, corrosion resistance and heat resistance. Also, IR reflectance of aluminum can be controlled in some degree depending on the thickness of oxide coating. Second method is to use pigments. Yellow 10P150 pigment is used for the brightest patch. This pigment is appropriate in this study due to high heat resistance and IR reflectance. Carbon black is used for the darkest patch. Carbon black absorbs much IR, and its color is not faded by any source of light. IR reflectance is adjusted elaborately by mixing two pigments. Finally, 6 patches are selected with consideration for actual IR reflectance of patches. As a result, IR reflectance of random subjects can be known approximately and IR photographs can have appropriate contrast with the IR standard chart.

Removal Torque of Mg-ion Implanted Clinical Implants with Plasma Source Ion Implantation Method (마그네슘 이온주입 임플란트의 뒤틀림 제거력에 관한 연구)

  • Kim, Bo-Hyoun;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.41-52
    • /
    • 2009
  • The surface treatment of titanium implant could bring out the biochemical bonding between bone and implant. The purpose of this study was to evaluate the biomechanical bone response of Mg-ion implanted implants with plasma source ion implantation method. Twelve New Zealand white rabbits were included in this study. Each rabbit received one control fixture (blasted with resorbable blasting media, RBM) and three types of Mg ion implanted fixtures in tibiae. The implants were left in place for 6 weeks before the rabbits were sacrificed. Removal torque value and resonance frequency analysis (ISQ) were compared. The repeated measured analysis of variance was used with $P{\leq}0.05$ as level of statistical significance. ISQ was not different among all groups. However, the ISQ was increased after 6 weeks healing. The group had lowest ISQ value showed the greatest increment. Mg-1 implants with 9.4% retained ion dose showed significantly higher removal torque value than that of the other implants. From this results, it is concluded that the Mg-1 implants has stronger bone response than control RBM surface implant.