This study compares and analyzes user experiences of intelligent personal assistant services based on the evaluation criteria of human-computer interaction to explore positive elements of user experiences and factors that could be improved. The research was conducted on Apple's Siri, Google's Google Associate, and Samsung's Bixby, which is presently the smartest personal assistant service on the market. The research method was to compare and analyze the concepts and characteristics of the current services through a literature review and by interviewing seven UI/UX design experts for the second 2 weeks using contextual inquiry. The interview reorganized Peter Morville's user experience honeycomb, reducing his seven usability principles down to five, asking questions about usability, convenience, visual attractiveness, reliability, and satisfaction. On the basis of the reconfigured usability principle, the assessment was conducted on the basis of the assessment timing and the system usability scale. This study is meaningful in that it analyzed the user experience of artificial intelligence personal assistant services both quantitatively and qualitatively.
Proceedings of the Korea Inteligent Information System Society Conference
/
2000.04a
/
pp.251-258
/
2000
인공신경망에 의해 부도예측을 하기 위해서는 여러 개의 재무비율을 입력변수 즉, 입력노드로 이용하는데, 이 가운데 적절한 입력노드를 선정하는 일은 예측력을 결정하는데 있어서 매우 중요하다. 본 연구에서는 새로운 입력노드 선정 휴리스틱을 제안하기 위하여 적절한 훈련이 끝난 인공신경망 모델에서 각 입력노드와 연결되는 가중치들의 합에 대한 절대값인 연결강도가 작은 경우 해당 노드는 출력값에 대한 설명력이 약할 것이다라는 연결강도판별 명제를 제시한다. 즉, 연결강도가 연결강도임계치보다 작은 입력노드는 제거 대상으로 분류할 수 있을 것이고, 이들 노드를 제외한 입력노드는 그렇지 않은 경우보다 더 나은 예측력을 보여 줄 수 있을 것이다. 연결강도판별 명제를 실증적으로 입증하기 위해 본 연구에서는 연결강도판별 선처리 과정에 대한 방법론을 제안하고 제안된 방법론에 의해 부도예측을 실시하여 아무런 선처리를 거치지 않은 모형과 비교하였고, 또 기존의 입력변수 선정방식 중에 하나인 의사결정트리 방식에 의한 입력변수 선정 모형과도 비교하여 더 나은 결과를 얻었다.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.711-714
/
2018
본 연구의 목적은 교육관리시스템(LMS)에서의 학습활동로그를 바탕으로 학습성과 영향도를 분석하고 이를 예측하기 위한 모델을 개발하는데 있다. 연구방법은 먼저 상관분석을 사용하여 유의미한 변수를 선정하였으며, 딥러닝을 사용하여 예측 모델을 생성하였다. 모델 생성 결과 테스트 데이터 셋에 대해 약 84%의 정확도로 학습성과를 예측할 수 있었다. 본 연구는 온라인 교육환경에서 빅데이터와 인공지능을 적용할 수 있는 새로운 관점을 제공할 것으로 기대한다.
Recently, fake news has attracted worldwide attentions regardless of the fields. The Hyundai Research Institute estimated that the amount of fake news damage reached about 30.9 trillion won per year. The government is making efforts to develop artificial intelligence source technology to detect fake news such as holding "artificial intelligence R&D challenge" competition on the title of "searching for fake news." Fact checking services are also being provided in various private sector fields. Nevertheless, in academic fields, there are also many attempts have been conducted in detecting the fake news. Typically, there are different attempts in detecting fake news such as expert-based, collective intelligence-based, artificial intelligence-based, and semantic-based. However, the more accurate the fake news manipulation is, the more difficult it is to identify the authenticity of the news by analyzing the news itself. Furthermore, the accuracy of most fake news detection models tends to be overestimated. Therefore, in this study, we first propose a method to secure the fairness of false news detection model accuracy. Secondly, we propose a method to identify the authenticity of the news using the social data broadly generated by the reaction to the news as well as the contents of the news.
Journal of the Korea Society of Computer and Information
/
v.28
no.1
/
pp.39-47
/
2023
In this paper, we propose a method to measure the similarity between golf swings in videos. As it is known that deep learning-based artificial intelligence technology is effective in the field of computer vision, attempts to utilize artificial intelligence in video-based sports data analysis are increasing. In this study, the joint coordinates of a person in a golf swing video were obtained using a deep learning-based pose estimation model, and based on this, the similarity of each swing segment was measured. For the evaluation of the proposed method, driver swing videos from the GolfDB dataset were used. As a result of measuring swing similarity by pairing swing videos of a total of 36 players, 26 players evaluated that their other swing sequence was the most similar, and the average ranking of similarity was confirmed to be about 5th. This ensured that the similarity could be measured in detail even when the motion was performed similarly.
Hyun Taek Lim;Soo Hyung Kim;Guee Sang Lee;Hyung Jeong Yang
Smart Media Journal
/
v.12
no.5
/
pp.28-35
/
2023
In this study, we propose a new light-weight model RoutingConvNet with fewer parameters to improve the applicability and practicality of speech emotion recognition. To reduce the number of learnable parameters, the proposed model connects bidirectional MFCCs on a channel-by-channel basis to learn long-term emotion dependence and extract contextual features. A light-weight deep CNN is constructed for low-level feature extraction, and self-attention is used to obtain information about channel and spatial signals in speech signals. In addition, we apply dynamic routing to improve the accuracy and construct a model that is robust to feature variations. The proposed model shows parameter reduction and accuracy improvement in the overall experiments of speech emotion datasets (EMO-DB, RAVDESS, and IEMOCAP), achieving 87.86%, 83.44%, and 66.06% accuracy respectively with about 156,000 parameters. In this study, we proposed a metric to calculate the trade-off between the number of parameters and accuracy for performance evaluation against light-weight.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.26-28
/
2017
스마트폰 보유율과 모바일 이용 행태가 급변함에 따라 방송사에서는 양방향 서비스를 포함한 다양한 방송 서비스를 제공하려고 노력하고 있다. 양방향 서비스 방송에서 시청자가 보낸 문구를 실제 화면에 보여주기까지 PD 와 담당자들의 수작업이 필요하다. 하지만 하루 평균 약 7,200 건 (MBC 오늘아침 소통중계)의 양방향 서비스 관련 로그가 남게 되어, PD 가 일일이 판별하기에는 많은 노력이 따른다. 이러한 불필요한 노력을 줄이기 위해 본 논문에서는 감정 분석을 이용한 딥러닝 인공지능 기반 양방향 서비스 방송 소프트웨어 시스템을 제안한다. 첫째, 시청자들이 전송한 의견, 건의사항, 내용 등을 전처리 과정을 진행한다. 둘째, 감정 사전을 이용해 전처리 된 단어와 비교하여 시청자가 보낸 문구의 감정 점수를 계산한다. 셋째, 과거 실제 방송에 송출된 시청자 문구를 감정 점수와 함께 딥러닝을 이용하여 훈련시킨다. 본 논문의 성능을 평가하기 위해, 2017 년 생방송 오늘아침 소통중계에 사례연구를 진행하였고 효율성을 보였다. 앞으로 이러한 양방향 서비스 방송 소프트웨어 시스템 도입으로, PD 가 방송 제작에 더욱 집중 할 수 있도록 차별화된 방송을 준비하는데 크게 기여할 것이라 기대한다.
kim, So Hyun;Park, Sang Myung;Kim, Moon Ji;Kwon, Lam;Park, Eun-Chan
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.682-683
/
2019
본 논문에서는 인공지능 Watson 기반의 챗봇 시스템에서 효율적인 자연어 처리를 위한 시나리오 설계 방법을 제안하고자 한다. 주제별 시나리오 구성을 단순히 무작위 순서로 배치하는 것 보다 연관도가 높은 노드를 가깝게 연결하는 것이 주제 전환 속도와 효율성 측면에서 유의미한 것으로 나타났다. 시스템의 구성 요소를 연결해주는 어플리케이션은 빠르게 질문과 답변 전달이 가능하도록 모듈화하여 PaaS 클라우드에 연결하도록 한다. 그 결과 경제적이고 단순한 개발 환경에서 어플리케이션을 구현하는 것이 가능했다. API를 호출하여 답변을 전달하는 경우에는 약 2.005초 정도로 빠른 응답 속도를 보였다. 따라서 본 논문에서 설명하는 챗봇 시스템 설계 방법을 사용할 경우 저비용으로 효율성 있는 서비스 제공 플랫폼을 구축할 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.1265-1267
/
2022
방대한 분량의 콘텐츠 홍수 속에서 원하는 소재를 찾기 위해 콘텐츠 내용을 검색할 수 있는 효과적인 방법이 지원되는 것은 창작을 자유롭게 하고, 콘텐츠 활용도를 높이기 위해 매우 중요하다. KBS 바다 서비스의 경우 분류체계 방법을 사용하고 있으나. 최근 딥러닝을 이용한 인공지능 기술의 발전으로 콘텐츠의 내용을 인공지능 기술로 태깅하고, 태깅된 텍스트 정보를 이용하여 검색할 수 있는 기술 개발이 활발히 수행되고, 국가적으로도 해당 기술을 지원하고 있다. 본 논문에서는 이러한 기술 개발의 선행 요소인 방송사의 제작과정에서 요구되는 동영상 소재 콘텐츠 검색의 요구사항을 KBS 비디오 아카이브 검색 키워드 실제 사용 데이터를 이용하여 분석하였다. 약 1,000여건의 검색 키워드 분석과 이용자와 운영자의 응답 내용을 고찰한 결과, 특정 키워드에 집중하여 검색할 수 있도록 보완하여 주는 것이 필요함을 알아내었다. 또한, 검색 범위를 효과적으로 축소하여 검색을 손쉽고 빠르게 할 수 있는 방법을 고찰하였다. 본 논문에서는 미디어 창작에서 필요한 소재 콘텐츠를 찾기 위해 연구 개발해야 할 미디어 속성 추출 기술의 방향성을 제시하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.137-138
/
2022
소스 코드 식별자의 이름을 잘 정하는 것은 소프트웨어 엔지니어링에서 중요한 문제로 다루어지고 있다. 프로그램 엔티티의 의미있고 간결한 이름은 코드 이해도에 중요한 역할을 하며, 소프트웨어 유지보수 관리 비용을 줄이는 데에 큰 효과가 있다. 이러한 코드 식별자 중 평균적으로 가장 복잡한 식별자는 '메소드 이름'으로 알려져 있다. 본 논문에서는 메소드 내용과 일관성 있는 적절한 메소드 이름 생성을 자연어 처리 태스크 중 하나인 '추상적 텍스트 요약'으로 치환하여 수행하는 트랜스포머 기반의 인코더-디코더 모델을 제안한다. 제안하는 모델은 Github 오픈소스를 크롤링한 Java 데이터셋에서 기존 최신 메소드 이름 생성 모델보다 약 50% 이상의 성능향상을 보였다. 이를 통해 적절한 메소드 작명에 필요한 비용 절감 달성 및 다양한 소스 코드 관련 태스크를 언어 모델의 성능을 활용하여 해결하는 데 도움이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.