• Title/Summary/Keyword: 약한 인공지능

Search Result 172, Processing Time 0.025 seconds

A Comparative Study of the Use of Intelligent Personal Assistant Services Experiences: Siri, Google Assistant, Bixby (지능형 개인비서 서비스의 사용경험 비교 연구: 시리, 구글어시스턴트, 빅스비를 중심으로)

  • Yoo, Cho-Rong;Kim, Song-Hyun;Kim, Jin-Woo
    • Science of Emotion and Sensibility
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 2020
  • This study compares and analyzes user experiences of intelligent personal assistant services based on the evaluation criteria of human-computer interaction to explore positive elements of user experiences and factors that could be improved. The research was conducted on Apple's Siri, Google's Google Associate, and Samsung's Bixby, which is presently the smartest personal assistant service on the market. The research method was to compare and analyze the concepts and characteristics of the current services through a literature review and by interviewing seven UI/UX design experts for the second 2 weeks using contextual inquiry. The interview reorganized Peter Morville's user experience honeycomb, reducing his seven usability principles down to five, asking questions about usability, convenience, visual attractiveness, reliability, and satisfaction. On the basis of the reconfigured usability principle, the assessment was conducted on the basis of the assessment timing and the system usability scale. This study is meaningful in that it analyzed the user experience of artificial intelligence personal assistant services both quantitatively and qualitatively.

Design of Optimal Input Nodes in Artificial Neural Network Models for Bankruptcy prediction: Link Weight Discrimination Analysis Approach (부도예측용 인공신경망모형의 최적 입력노드 설계: 연결강도판별분석 접근)

  • 이웅규;손동우
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.251-258
    • /
    • 2000
  • 인공신경망에 의해 부도예측을 하기 위해서는 여러 개의 재무비율을 입력변수 즉, 입력노드로 이용하는데, 이 가운데 적절한 입력노드를 선정하는 일은 예측력을 결정하는데 있어서 매우 중요하다. 본 연구에서는 새로운 입력노드 선정 휴리스틱을 제안하기 위하여 적절한 훈련이 끝난 인공신경망 모델에서 각 입력노드와 연결되는 가중치들의 합에 대한 절대값인 연결강도가 작은 경우 해당 노드는 출력값에 대한 설명력이 약할 것이다라는 연결강도판별 명제를 제시한다. 즉, 연결강도가 연결강도임계치보다 작은 입력노드는 제거 대상으로 분류할 수 있을 것이고, 이들 노드를 제외한 입력노드는 그렇지 않은 경우보다 더 나은 예측력을 보여 줄 수 있을 것이다. 연결강도판별 명제를 실증적으로 입증하기 위해 본 연구에서는 연결강도판별 선처리 과정에 대한 방법론을 제안하고 제안된 방법론에 의해 부도예측을 실시하여 아무런 선처리를 거치지 않은 모형과 비교하였고, 또 기존의 입력변수 선정방식 중에 하나인 의사결정트리 방식에 의한 입력변수 선정 모형과도 비교하여 더 나은 결과를 얻었다.

  • PDF

Learning Performance Analysis Using Deep Learning (딥러닝기법을 활용한 학습성과분석)

  • Oh, Jeong-Hoon;Yu, Heonchang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.711-714
    • /
    • 2018
  • 본 연구의 목적은 교육관리시스템(LMS)에서의 학습활동로그를 바탕으로 학습성과 영향도를 분석하고 이를 예측하기 위한 모델을 개발하는데 있다. 연구방법은 먼저 상관분석을 사용하여 유의미한 변수를 선정하였으며, 딥러닝을 사용하여 예측 모델을 생성하였다. 모델 생성 결과 테스트 데이터 셋에 대해 약 84%의 정확도로 학습성과를 예측할 수 있었다. 본 연구는 온라인 교육환경에서 빅데이터와 인공지능을 적용할 수 있는 새로운 관점을 제공할 것으로 기대한다.

Text Mining-based Fake News Detection Using News And Social Media Data (뉴스와 소셜 데이터를 활용한 텍스트 기반 가짜 뉴스 탐지 방법론)

  • Hyun, Yoonjin;Kim, Namgyu
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.4
    • /
    • pp.19-39
    • /
    • 2018
  • Recently, fake news has attracted worldwide attentions regardless of the fields. The Hyundai Research Institute estimated that the amount of fake news damage reached about 30.9 trillion won per year. The government is making efforts to develop artificial intelligence source technology to detect fake news such as holding "artificial intelligence R&D challenge" competition on the title of "searching for fake news." Fact checking services are also being provided in various private sector fields. Nevertheless, in academic fields, there are also many attempts have been conducted in detecting the fake news. Typically, there are different attempts in detecting fake news such as expert-based, collective intelligence-based, artificial intelligence-based, and semantic-based. However, the more accurate the fake news manipulation is, the more difficult it is to identify the authenticity of the news by analyzing the news itself. Furthermore, the accuracy of most fake news detection models tends to be overestimated. Therefore, in this study, we first propose a method to secure the fairness of false news detection model accuracy. Secondly, we propose a method to identify the authenticity of the news using the social data broadly generated by the reaction to the news as well as the contents of the news.

The Methodology of the Golf Swing Similarity Measurement Using Deep Learning-Based 2D Pose Estimation

  • Jonghyuk, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • In this paper, we propose a method to measure the similarity between golf swings in videos. As it is known that deep learning-based artificial intelligence technology is effective in the field of computer vision, attempts to utilize artificial intelligence in video-based sports data analysis are increasing. In this study, the joint coordinates of a person in a golf swing video were obtained using a deep learning-based pose estimation model, and based on this, the similarity of each swing segment was measured. For the evaluation of the proposed method, driver swing videos from the GolfDB dataset were used. As a result of measuring swing similarity by pairing swing videos of a total of 36 players, 26 players evaluated that their other swing sequence was the most similar, and the average ranking of similarity was confirmed to be about 5th. This ensured that the similarity could be measured in detail even when the motion was performed similarly.

RoutingConvNet: A Light-weight Speech Emotion Recognition Model Based on Bidirectional MFCC (RoutingConvNet: 양방향 MFCC 기반 경량 음성감정인식 모델)

  • Hyun Taek Lim;Soo Hyung Kim;Guee Sang Lee;Hyung Jeong Yang
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.28-35
    • /
    • 2023
  • In this study, we propose a new light-weight model RoutingConvNet with fewer parameters to improve the applicability and practicality of speech emotion recognition. To reduce the number of learnable parameters, the proposed model connects bidirectional MFCCs on a channel-by-channel basis to learn long-term emotion dependence and extract contextual features. A light-weight deep CNN is constructed for low-level feature extraction, and self-attention is used to obtain information about channel and spatial signals in speech signals. In addition, we apply dynamic routing to improve the accuracy and construct a model that is robust to feature variations. The proposed model shows parameter reduction and accuracy improvement in the overall experiments of speech emotion datasets (EMO-DB, RAVDESS, and IEMOCAP), achieving 87.86%, 83.44%, and 66.06% accuracy respectively with about 156,000 parameters. In this study, we proposed a metric to calculate the trade-off between the number of parameters and accuracy for performance evaluation against light-weight.

Broadcasting Software System for Interactive Service based on Deep Learning (차세대 딥러닝 인공지능을 이용한 양방향 서비스 방송 소프트웨어 시스템)

  • Yang, Geunseok;Shin, Yongwoo;Roh, Minchul;Kang, Seongho;Joo, Ingyu;Kwak, Jaechul;Ku, Jinwon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.26-28
    • /
    • 2017
  • 스마트폰 보유율과 모바일 이용 행태가 급변함에 따라 방송사에서는 양방향 서비스를 포함한 다양한 방송 서비스를 제공하려고 노력하고 있다. 양방향 서비스 방송에서 시청자가 보낸 문구를 실제 화면에 보여주기까지 PD 와 담당자들의 수작업이 필요하다. 하지만 하루 평균 약 7,200 건 (MBC 오늘아침 소통중계)의 양방향 서비스 관련 로그가 남게 되어, PD 가 일일이 판별하기에는 많은 노력이 따른다. 이러한 불필요한 노력을 줄이기 위해 본 논문에서는 감정 분석을 이용한 딥러닝 인공지능 기반 양방향 서비스 방송 소프트웨어 시스템을 제안한다. 첫째, 시청자들이 전송한 의견, 건의사항, 내용 등을 전처리 과정을 진행한다. 둘째, 감정 사전을 이용해 전처리 된 단어와 비교하여 시청자가 보낸 문구의 감정 점수를 계산한다. 셋째, 과거 실제 방송에 송출된 시청자 문구를 감정 점수와 함께 딥러닝을 이용하여 훈련시킨다. 본 논문의 성능을 평가하기 위해, 2017 년 생방송 오늘아침 소통중계에 사례연구를 진행하였고 효율성을 보였다. 앞으로 이러한 양방향 서비스 방송 소프트웨어 시스템 도입으로, PD 가 방송 제작에 더욱 집중 할 수 있도록 차별화된 방송을 준비하는데 크게 기여할 것이라 기대한다.

  • PDF

A Study on the chatbot systems using AI Watson (인공지능 Watson 기반의 챗봇 시스템)

  • kim, So Hyun;Park, Sang Myung;Kim, Moon Ji;Kwon, Lam;Park, Eun-Chan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.682-683
    • /
    • 2019
  • 본 논문에서는 인공지능 Watson 기반의 챗봇 시스템에서 효율적인 자연어 처리를 위한 시나리오 설계 방법을 제안하고자 한다. 주제별 시나리오 구성을 단순히 무작위 순서로 배치하는 것 보다 연관도가 높은 노드를 가깝게 연결하는 것이 주제 전환 속도와 효율성 측면에서 유의미한 것으로 나타났다. 시스템의 구성 요소를 연결해주는 어플리케이션은 빠르게 질문과 답변 전달이 가능하도록 모듈화하여 PaaS 클라우드에 연결하도록 한다. 그 결과 경제적이고 단순한 개발 환경에서 어플리케이션을 구현하는 것이 가능했다. API를 호출하여 답변을 전달하는 경우에는 약 2.005초 정도로 빠른 응답 속도를 보였다. 따라서 본 논문에서 설명하는 챗봇 시스템 설계 방법을 사용할 경우 저비용으로 효율성 있는 서비스 제공 플랫폼을 구축할 수 있다.

Analysis of Keyword-based Content Search Service Requirements in Video Archive for Media Creation (미디어 창작을 위한 비디오 아카이브 키워드기반 내용 검색 서비스 요구사항 분석)

  • Jung, Byunghee;Park, Wan;Lee, Yunseong;Lee, Hajoo;Kim, Sansung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1265-1267
    • /
    • 2022
  • 방대한 분량의 콘텐츠 홍수 속에서 원하는 소재를 찾기 위해 콘텐츠 내용을 검색할 수 있는 효과적인 방법이 지원되는 것은 창작을 자유롭게 하고, 콘텐츠 활용도를 높이기 위해 매우 중요하다. KBS 바다 서비스의 경우 분류체계 방법을 사용하고 있으나. 최근 딥러닝을 이용한 인공지능 기술의 발전으로 콘텐츠의 내용을 인공지능 기술로 태깅하고, 태깅된 텍스트 정보를 이용하여 검색할 수 있는 기술 개발이 활발히 수행되고, 국가적으로도 해당 기술을 지원하고 있다. 본 논문에서는 이러한 기술 개발의 선행 요소인 방송사의 제작과정에서 요구되는 동영상 소재 콘텐츠 검색의 요구사항을 KBS 비디오 아카이브 검색 키워드 실제 사용 데이터를 이용하여 분석하였다. 약 1,000여건의 검색 키워드 분석과 이용자와 운영자의 응답 내용을 고찰한 결과, 특정 키워드에 집중하여 검색할 수 있도록 보완하여 주는 것이 필요함을 알아내었다. 또한, 검색 범위를 효과적으로 축소하여 검색을 손쉽고 빠르게 할 수 있는 방법을 고찰하였다. 본 논문에서는 미디어 창작에서 필요한 소재 콘텐츠를 찾기 위해 연구 개발해야 할 미디어 속성 추출 기술의 방향성을 제시하였다.

  • PDF

A Method Name Suggestion Model based on Abstractive Text Summarization (추상적 텍스트 요약 기반의 메소드 이름 제안 모델)

  • Ju, Hansae;Lee, Scott Uk-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.137-138
    • /
    • 2022
  • 소스 코드 식별자의 이름을 잘 정하는 것은 소프트웨어 엔지니어링에서 중요한 문제로 다루어지고 있다. 프로그램 엔티티의 의미있고 간결한 이름은 코드 이해도에 중요한 역할을 하며, 소프트웨어 유지보수 관리 비용을 줄이는 데에 큰 효과가 있다. 이러한 코드 식별자 중 평균적으로 가장 복잡한 식별자는 '메소드 이름'으로 알려져 있다. 본 논문에서는 메소드 내용과 일관성 있는 적절한 메소드 이름 생성을 자연어 처리 태스크 중 하나인 '추상적 텍스트 요약'으로 치환하여 수행하는 트랜스포머 기반의 인코더-디코더 모델을 제안한다. 제안하는 모델은 Github 오픈소스를 크롤링한 Java 데이터셋에서 기존 최신 메소드 이름 생성 모델보다 약 50% 이상의 성능향상을 보였다. 이를 통해 적절한 메소드 작명에 필요한 비용 절감 달성 및 다양한 소스 코드 관련 태스크를 언어 모델의 성능을 활용하여 해결하는 데 도움이 될 것으로 기대된다.

  • PDF