• 제목/요약/키워드: 약한 인공지능

검색결과 172건 처리시간 0.028초

드론 촬영 이미지 데이터를 기반으로 한 도로 균열 탐지 딥러닝 모델 개발 (Development of Deep Learning Model for Detecting Road Cracks Based on Drone Image Data)

  • 권영주;문성호
    • 토지주택연구
    • /
    • 제14권2호
    • /
    • pp.125-135
    • /
    • 2023
  • 드론은 국토조사, 수송, 해양, 환경, 방재, 문화재, 건설 등 다양한 분야에서 활용되고 있다. 또한 사물인터넷(Internet of Things), 인공지능(Artificial Intelligence) 등과 관련하여 4차 산업 혁명의 핵심기술을 검증하고 적용시킬 수 있는 기술로 떠오르고 있다. 본 연구에서는 드론을 활용하여 균열을 자동으로 탐지할 수 있는 딥러닝 모델을 개발하고자 한다. 딥러닝 학습을 위한 이미지 데이터는 Mavic3 드론을 이용하여 수집하였고 촬영고도는 20m, ×7배율로 촬영하였다. 촬영 시 약 2m/s의 속도로 전진하여 영상을 찍고, 프레임을 추출하는 식으로 데이터를 수집하였다. 이런식으로 수집한 데이터를 통해 딥러닝 학습을 진행하였다. 본 연구에서는 딥러닝 학습모델로 Backbone으로는 Swin Transformer, Architecture로 UperNet을 사용하였다. 약 800장의 라벨링 된 데이터를 Augmentation기법으로 데이터 양을 증가시키고 3차에 걸쳐 학습을 진행하였다. 1차와 2차 학습 시 Cross-Entropy loss function을 사용하였고 3차 학습 시 Tversky Loss Function을 사용하였다. 학습결과, 균열 탐지와 균열율을 계산할 수 있는 모델을 개발하였다. 또한, 드론의 위치 정보를 이용해 특정 도로의 한 차선 균열율을 계산할 수 있는 모델을 개발하였다. 향후 추가적인 연구를 통하여 균열탐지모델의 고도화를 사물인터넷(IoT)과의 융합으로 이루었을 때 소파보수(Patching)나 포트홀(Pothole)의 탐지가 가능할 것으로 보인다. 또한 드론의 실시간 탐지 업무수행으로 포장 유지 보수구간에 대한 탐지를 신속하게 확보할 수 있을것으로 기대된다.

이면도로 비신호교차로에서 AI 기반 엣지컴퓨팅 기술이 교통사고 감소에 미치는 영향에 관한 연구 (A Study on the Impact of AI Edge Computing Technology on Reducing Traffic Accidents at Non-signalized Intersections on Residential Road)

  • 장영규;김경석;김혜원;조원호
    • 한국ITS학회 논문지
    • /
    • 제23권2호
    • /
    • pp.79-88
    • /
    • 2024
  • 교통사고에 가장 취약한 도로는 이면도로 비신호교차로이며, 이들 취약지점에 AI 및 엣지 컴퓨팅 융합 기술을 적용하여 교통사고를 예방하고자 하는 시도가 이루어졌다. 본 연구에서는 현장 데이터를 활용하여 AI 및 엣지컴퓨팅 기술이 어떻게 교통사고 감소에 영향을 미칠 수 있고 한계가 무엇인지 교통공학적 측면에서 분석하였다. AI 객체인식으로 20m 후방에서 객체정보를 취득함으로써 운전자는 약 3.6초의 대응시간을 확보하게 되고, 엣지기술에 의해 0.5~0.8초만에 정보가 표출되어 운전자는 교차로 상황에 대응할 수 있는 시간을 얻게 된다. 또한, 교차로 접근로 10m지점에서는 11~12km, 20m지점에서는 20km/h 수준으로 속도관리가 이루어질 때 교차로 진입 전 정지가 가능한 것으로 분석되었다. 따라서 이들 시스템 도입 후 실증 교차로의 데이터를 Taylor 모형에 적용하면 교통사고 확률이 약 40% 감소하는 것으로 분석되었다. 결과적으로 높은 AI 기술의 높은 객체인식률, 엣지기술의 실시간 정보제공 그리고 교차로 접근로의 적정 속도관리가 함께 이루어질 때 교통사고 감소가 가능한 것으로 나타났다.

인공지능 기반 온실 환경인자의 시간영역 추정 (A Research about Time Domain Estimation Method for Greenhouse Environmental Factors based on Artificial Intelligence)

  • 이정규;오종우;조용진;이동훈
    • 생물환경조절학회지
    • /
    • 제29권3호
    • /
    • pp.277-284
    • /
    • 2020
  • 스마트 팜 관리의 활용 효율성을 높이기 위해서는 작물 및 환경 변화에 대한 사전 검사를 실시간으로 평가하기 위한 모델링 기법이 필요하다. 시설 온실 내부의 CO2와 같은 필수 환경 요소는 다양한 상관 변수가 밀접하게 결합 된 시간 영역에서 신뢰할 수 있는 추정 모델을 확립하기가 어렵다. 따라서 본 연구는 입력 영역과 출력 변수를 CO2와 같은 시간 관점에서 인접 영역에 분포된 환경 정보를 이용하여 시간 복잡도를 줄이기 위한 인공 신경망을 개발하기 위해 수행되었다. 스마트 팜을 계측하기 위한 센서 모듈을 통해 환경 요소를 지속적으로 측정하였다. 실험기간의 평균 데이터로 예측하는 모델링 1, 전일 데이터로 예측하는 모델링 2을 구성하여 CO2 환경인자의 상호관계를 예측하였다. 전일의 데이터 학습으로 예측하는 모델링 2가 60일 평균값으로 예측한 모델링 1에 비해 성능이 우수하였다. 30일 이전까지는 대부분 0.70~0.88사이의 결정계수를 보였으며 모델링 2가 약0.05정도 높게 나타났다. 하지만 30일 이후에는 두 가지 모델링 모두 결정 계수 값이 0.50 이하로 낮은 값을 보였다. 모델링 접근법에 따라 결정 요인의 값을 비교하고 분석 한 결과 인접한 시간대의 데이터는 고정 신경망 모델을 사용하는 대신 예측이 필요한 지점에서 상대적으로 높은 성능을 나타냈다.

해상 객체 탐지를 위한 머신러닝 기반의 초분광 영상 분석 기술 (Hyperspectral Image Analysis Technology Based on Machine Learning for Marine Object Detection)

  • 오상우;서동민
    • 해양환경안전학회지
    • /
    • 제28권7호
    • /
    • pp.1120-1128
    • /
    • 2022
  • 해양사고 발생시 실종자는 해양에 노출된 시간이 길어질수록 생존확률이 빠르게 감소하기 때문에 인명구조를 위해서는 신속한 수색이 필요하다. 또한 해양의 수색영역은 육상에 비해서 매우 넓기 때문에 효율적인 수색을 위해서는 선박을 이용한 육안수색보다는 인공위성이나 항공기에 탑재된 센서를 이용한 해상 객체 탐지 기술의 적용이 필요하다. 본 연구는 항공기에 탑재된 초분광 영상 센서를 이용하여 해양에서 객체를 신속하게 탐지하기 위한 목적으로 진행되었다. 초분광 영상 센서로 촬영된 영상은 8,241 × 1,024의 공간 해상도를 가지며, 한 화소당 0.7 m의 분해능과 127개의 스펙트럼으로 구성된 대용량의 데이터이다. 본 연구에서는 이러한 데이터를 신속하게 분석하기 위한 목적으로 DBSCAN을 사용한 해수 식별 알고리즘과 밀도 기반의 육지 제거 알고리즘을 결합한 해상 객체 탐지 모델을 개발하였다. 개발한 모델은 초분광 영상에 적용하였을 때 약 5 km2의 해상 영역을 100초 내로 분석할 수 있는 성능을 보였다. 또한 개발한 모델의 탐지 정확도를 평가하기 위해서 항공기를 이용하여 목포, 군산, 여수 지역의 초분광 영상을 촬영하였으며, 본 연구에서 개발한 탐지 모델에 적용한 결과, 실험 영상 내의 선박들을 90 %의 정확도로 탐지할 수 있는 결과를 얻었다. 본 연구에서 개발된 기술은 소형 선박의 수색·구조 활동을 지원하는 중요한 정보로 활용될 수 있을 것으로 기대한다.

AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류 (Parameter Extraction for Based on AR and Arrhythmia Classification through Deep Learning)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제24권10호
    • /
    • pp.1341-1347
    • /
    • 2020
  • 부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 인공 지능 기반의 부정맥 분류에 많이 사용되고 있다. 본 연구에서는 AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG 신호에서 R파를 검출하고 자기 회귀 모델을 통하여 최적의 QRS와 RR간격을 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 부정맥을 분류하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 훈련 및 분류 정확도를 확인하였다. 성능 평가 결과 PVC는 약 97% 이상의 평균 분류율을 나타내었다.

인간자세 추정방법에 의한 2차원 웹툰 캐릭터 포즈 생성 (Pose Creation of Character in Two-Dimensional Cartoon through Human Pose Estimation)

  • 정희용;신춘성
    • 방송공학회논문지
    • /
    • 제27권5호
    • /
    • pp.718-727
    • /
    • 2022
  • 국내 웹툰 산업 매출액이 전년도 대비 약 65% 폭발적 성장을 하였고 향후 매출 규모가 1조원을 돌파할 것이라 예상을 하고 있다. 웹툰 제작 과정을 살펴보면 스토리와 콘티와 같이 창작을 필요로 하는 작업도 있지만, 스케치와 펜터치와 같은 단순 반복 작업도 있기 때문에 최근 주목받고 있는 딥러닝 기반 인간자세 추정방법을 사용하여 간소화 할 수 있다면, 웹툰 제작 과정을 효과적으로 개선할 수 있다. 따라서 본 연구는 인간자세 추정방법을 사용하여 인간의 동작을 스케치한 2차원 웹툰 캐릭터와 관절을 매칭 시켜서, 인간의 동작에 따라서 캐릭터의 동작을 생성시키는 방법을 제안한다. 이를 위해 생성한 2차원 캐릭터를 SVG 파일 형식인 벡터화된 그래픽 이미지로 생성시켜 인간자세의 관절을 나타내는 스켈레톤과 매칭을 시켰다. 실험결과를 통해 2차원 웹툰 캐릭터의 포즈가 웹 카메라의 사용자 자세와 동일한 동작을 생성시킬 수 있는 것을 확인할 수 있었다. 또한 저장한 정지 이미지에서 하나의 포즈를 선별하여 필요한 장면에 삽입할 수도 있고, 연속 동작에 대하여 비디오로 녹화하여 포즈 선별을 할 수 있다는 점도 확인하였다. 제안한 포즈 생성 방법은 기존의 포즈 투 포즈 방식 애니메이션 포즈 생성에 큰 기여를 할 수 있을 것으로 기대된다.

RGB 영상에서 딥러닝 기반 동공 중심점을 이용한 홍채 검출 (Iris Localization using the Pupil Center Point based on Deep Learning in RGB Images)

  • 이태균;유장희
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제16권2호
    • /
    • pp.135-142
    • /
    • 2020
  • 본 논문에서는 RGB 영상에서 홍채 검출 방법에 관하여 기술하였다. 기존의 홍채 검출 방법은 대부분 적외선 영상을 대상으로 하고 있어, 다양한 응용을 위해서는 RGB 영상의 홍채 검출 기술이 요구된다. 제안된 홍채 검출 방법은 i) 입력 영상에서 원형 허프 변환을 사용한 홍채 후보 영역 검출, ii) 딥러닝 기반의 동공 중심점 검출, iii) 동공 중심점을 이용한 홍채 영역 선택, iv) 선택된 홍채 영역 보정 과정으로 구성된다. 홍채 후보 영역은 허프 공간을 생성한 후 중심점 후보의 교차 개수가 많은 순으로 검출하며, 후보 영역 중 홍채는 검출된 동공의 중심점을 기준으로 선택한다. 그리고, 홍채의 모양이 왜곡되어 오차가 발생하는 것을 보완하기 위해 검출된 홍채 중심을 기준으로 새로운 경계점을 찾아 보정하는 방법을 사용하였다. 또한, 실험을 통하여 제안된 방법이 기존 원형 허프 변환 방법 대비 약 27.4% 향상된 정확도를 갖는 것을 확인하였다.

지각된 사회적 배제가 따뜻한 조명 선호에 미치는 효과 (The effect of perceived social exclusion on warm lighting preferences)

  • 이국희
    • 한국HCI학회논문지
    • /
    • 제14권2호
    • /
    • pp.5-12
    • /
    • 2019
  • 인간의 기본 욕구 중 하나인 존중의 욕구를 충족시키지 못하는 사회적 배제는 이를 지각한 사람들로 하여금 물리적 따뜻함을 추구하도록 만든다고 알려져 있다. 그러나 사회적 배제가 따뜻함을 추구하게 만드는 현상이 조명의 색 같은 감성적이고 상징적인 차원에도 일반화될 수 있을지에 대해서는 연구가 드물었다. 본 연구는 지각된 사회적 배제가 따뜻한 조명 선호에 미치는 효과를 검증하기 위해 이루어졌으며, 이를 위해 두 가지 실험을 수행하였다. 실험-1은 어제 사람들로부터 존중받은 사람은 사회적 배제를 지각하지 않은 집단으로, 존중받지 못한 사람은 사회적 배제를 지각한 집단으로 구분한 후, 따뜻한 조명(3000K), 중립적 조명(4000K), 차가운 조명(6000K)에 대한 선호도를 측정하였다. 결과적으로 사회적 배제를 지각한 집단은 그렇지 않은 집단보다 따뜻한 조명 선호도가 강했고, 차가운 조명 선호도는 약했다. 또한 사회적 배제를 지각한 집단은 중립적 조명보다 따뜻한 조명을 강하게 선호하는 반면, 차가운 조명을 약하게 선호함을 확인하였다. 실험-2는 실험-1과 동일한 방식으로 집단을 구분한 후, 따뜻한 조명이 적용된 공간, 중립적 조명이 적용된 공간, 차가운 조명이 적용된 공간에 대한 선호를 측정하였다. 결과적으로 사회적 배제를 지각한 집단은 그렇지 않은 집단보다 따뜻한 조명이 적용된 공간에 대한 선호도가 강했고, 차가운 조명이 적용된 공간에 대한 선호도는 약했다. 아울러 사회적 배제를 지각한 집단은 중립적 조명이 적용된 공간보다 따뜻한 조명이 적용된 공간을 강하게 선호하는 반면, 차가운 조명이 적용된 공간은 약하게 선호함을 관찰하였다. 본 연구는 장애인, 다문화 가정, 이주 노동자와 같이 사회적 배제를 경험한 사람들의 생활공간 디자인, 이들을 대상으로 한 인공지능 상담 서비스 및 친구 캐릭터 개발 등에 시사점을 준다.

해양 이상 자료 탐지를 위한 오토인코더 활용 기법 최적화 연구 (An Outlier Detection Using Autoencoder for Ocean Observation Data)

  • 김현재;김동훈;임채욱;신용탁;이상철;최영진;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제33권6호
    • /
    • pp.265-274
    • /
    • 2021
  • 해양 이상 자료 탐지의 연구는 이전부터 활발하게 이루어지고 있으며, 통계 및 거리 기반의 기계 학습 알고리즘을 활용하는 기법들이 개발되었다. 최근에는 AI 기반의 해양 자료 이상 탐지 기법이 많은 관심을 받고 있으며, AI를 활용한 해양 이상 자료 탐지 기법은 정답이 주어지는 지도학습 기법이 주를 이루고 있다. 이러한 방법은 학습에 필요한 모든 자료에 수작업으로 분류 정보(라벨)를 지정해야 한다는 점에서 많은 시간과 비용이 요구된다. 본 연구에서는 이러한 문제를 극복하기 위해 비지도학습 기반의 오토인코더를 이상 자료 탐지 기법에 사용하였다. 실험으로는 오토인코더의 평가를 위해 단변수·다변수학습 두가지 실험을 구성하였고, 단변수 학습은 기상청에서 제공하는 덕적도 부이 정점 관측 자료 중 수온만 사용하였으며, 다변수 학습은 수온과 기온, 풍향, 풍속, 기압, 습도 등을 사용하였다. 사용기간은 1996~2020년의 25년간이며 학습 자료에 해양-기상 자료의 특성을 고려한 전처리 기법을 적용하였다. 학습된 다변수와 단변수 오토인코더를 활용하여 실제 표층 수온에 대한 이상 탐지를 시도하였다. 모델성능 비교를 위해 오차를 삽입한 합성 자료에 다변수와 단변수 오토인코더를 포함한 여러 이상 탐지 기법을 적용하여 정량적으로 평가하였으며, 다변수/단변수의 정확도가 각각 약 96%/91%로써 다변수 오토인코더가 더 나은 이상자료 탐지 성능을 보였다. 오토인코더를 이용한 비지도학습 기반 이상 탐지 기법은 주관적 판단에 의한 오류와 자료 라벨링에 필요한 시간과 비용을 줄일 수 있다는 점에서 다양하게 활용될 것으로 판단된다.

몬테칼로 시뮬레이션 기반의 다수 지상 연성표적에 대한 최적 조준점 산출 (Monte Carlo Simulation based Optimal Aiming Point Computation Against Multiple Soft Targets on Ground)

  • 김종환;안남수
    • 한국시뮬레이션학회논문지
    • /
    • 제29권1호
    • /
    • pp.47-55
    • /
    • 2020
  • 본 논문은 드론봇 전투체계를 운용하여 전투전단의 적 보병부대 위치정보를 수집하였을 시, 지휘관이 요구하는 적 부대 피해수준을 충족하면서 적 보병부대를 신속하고 정확하게 타격하기 위하여, 보유한 화력체계의 살상범위를 기초로 최적의 사격발수 및 조준점 위치를 실시간 자동으로 산출하는 인공지능 알고리즘 연구이다. 이를 위해, 100m×200m 크기의 야지 전장환경에서 증강된 소대급 규모의 적 보병부대를 임의로 전개 및 모의하고, 약 15m의 살상범위를 갖는 가상의 화력체계에 대한 모델링을 수행하였으며, 각개 적병사의 무피해/경상 및 중상/사망 등의 피해유형 및 임무수행 가능여부를 모의하기 위하여 연성표적의 피해효과에 적용되는 칼튼피해함수를 적용하고 전장의 불확실성을 모의하기 위하여 몬테칼로 시뮬레이션을 수행하였다. 또한, 지휘관 의도에 부합된 적부대의 피해수준을 달성하기 위하여, 반복적인 모의 및 비지도학습의 k-mean clustering 기법을 적용하여 최적의 사격발수 및 조준점 위치를 0.4초 이내로 산출하였다. 본 연구에서 제안하는 방법은 드론봇 전투체계를 운용하는 대대급 규모의 전투부대에서 '탐지-결심-타격' 의사결정시간의 단축에 기여할 것으로 판단된다.