• Title/Summary/Keyword: 앵귤라 콘택트 볼베어링

Search Result 2, Processing Time 0.018 seconds

A Study on the Thermal Behavior of Bearing Surroundings using State-Space in Machine Tool Spindle System (공작기계 스핀들시스템에서 상태공간을 이용한 베어링 주변의 열거동에 대한 연구)

  • 신동수;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1045-1049
    • /
    • 1995
  • This paper proposes the state-space model of the thermal behavior of the spindle system to establish dynamic mathematical model of thermal characteristics in machine tool spindle system. the model is derived form physical law of heat transfer and thermoelasticity and represents the thermal behavior induced by uneven thermal expansions whitin a bearing. The model, which is sucessfully validated for two typical configurations of high speed spindle assembles, provides a tool for understanding the basis mechanics of induced thermal expansion as a function of initial preload, spindle speed and housing cooling conditions.

  • PDF

Static and Dynamic Characteristics of the Spindle Bearing System with a Gear Located on the Bearing Span (베어링 스팬상에 기어구동축을 갖는 스핀들 베어링 시스템의 정적 및 동적 해석방법에 관한 연구)

  • Choe, Jin-Gyeong;Big, Gyu-Yeol;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1477-1485
    • /
    • 1996
  • Since the spindle bearing systme is the main source of the total cutting point compliance of machine tool structures, in this work, the static and dynamic characteristics of the spndle bearing systme driven by the gear located on the bearing span were investigated using analytical and finite elemtn methods to improve the performance of the spindle bearing system. Based on the theretical results, a specially designed prototype spindle bvearing systme was manufactured. Using the manufactured spindle bearing system, the static and dynamic characteristics were measured. From the comparison of the experimental results with the theoretical results, it was found that the finite elemetn method predicted well the static and dynamic characteristics of the spindle bearing system.