• Title/Summary/Keyword: 앰피볼라이트

Search Result 17, Processing Time 0.027 seconds

Geochemistry and Metamorphism of the Amphibolite in the Odesan Gneiss Complex (오대산편마암복합체내에 산출되는 앰피볼라이트의 지화학적 특성과 변성작용)

  • 권용완
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.111-131
    • /
    • 1998
  • The migmatitic gneiss in the Odesan Gneiss Complex has small amount of quartzite, amphibolite and marble and the Kuryong Group which contact with migmatitic gneiss unconformitly, also contains some amphibolite. Preview studies of this area had regarded that the amphibolites contact with marble had been produced by metasomatism from the pelitic and calcareous sediments mixtures, but the amphibolite is reinterpreted as igneous origin. $SiO_2$ content of the amphibolite is 45.9~52.7 wt%, which corresponds to basaltic composition. MgO content has narrow range (4.6~6.87 wt%) and major and trace element are plotted against MgO,$TiO_2, P_2O_5$, Hf, Zr are reduced and Cr and Ni are increased their content with increasing MgO. This phenomenon indicates that the basaltic magma as the protolith of the amphibolite had frationated with the crystallization of the pyroxene and/or olivine. REE pattern has smoothly decrease from LREE to HREE. Eu/Eu(0.83~1.19) show the flat Eu anomaly, which indicate small fractional crystallization of plagioclase. HREE is enriched in the garnet-bearing amphibolites. Several discrimination diagram for the basaltic magma show that the amphibolite of the study area is originated tholeiitic basaltic magma indicating continental rift environment. Due to determine the metamorphic condition garnet-hornblende geothermometry and hornblende-plagioclase geobarometry are used. Peak metamorphic temperature range of the amphibolite $788~870^{\circ}C$ and is deduced toward the northeastern part. The calculated temperature from the amphibolite has slightly higher than the temperature of the metapelites but the trend of metamorphic grade which decrease from western to eastern part progradly is similar to each other. The metamorphic pressure calculated by garnet- hornblede-plagioclase geobarometry is 4~5kb. But ilmenite-plagioclase pair enclosed in garnet show 8 kb at $700^{\circ}C$ by garnet-ilmenite-rutile-plagioclase geobarometery. The zonal profile of garnet in sample 84 shows the bell-shape profile, which grossular content decreases whereas pyrope content increases progressively. This means that the amphibolite has undergone the clockwise P-T-t path which is shown in the migmatitic gneiss of the Odesan Gneiss Complex.

  • PDF

Magmatism and Metamorphism of the Proterozoic in the Northeastern Part of Korea : Petrogenetic and Geochemical Characteristics of the Okbang Amphibolites (한국(韓國) 북동부지역(北東部地域) 원생대(原生代)의 화성활동(火成活動)과 변성작용(變成作用) : 옥방(玉房) 앰피볼라이트의 암석성인(岩石成因)과 지구화학적(地球化學的) 특징(特徵))

  • Chang, Ho-Wan;Lee, Dong-Hwa;Park, Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.489-498
    • /
    • 1993
  • The Okbang amphibolites occurring as sill-shaped bodies within the Precambrian Wonnam Group have been studied in terms of geochemical characteristics for their tectonomagmatic environments. The amphibolites fall in the ortho-amphibolite fields in Ni and Cr versus Cu diagrams. They belong to subalkaline and tholeiitic series in total alkali versus silica and ternary AFM diagrams, respectively. They show the compositional variation corresponding to the differentiation trend of tholeiitic suites. In discrimination diagrams using high-field-strength elements such as Ti, Zr, Nb and Y, the amphibolites show geochemical affinities to both of volcanic-arc tholeiites and normal (depleted) mid-oceanic ridge tholeiites. The REE patterns of the amphibolites are nearly flat and extremely similar to those of back-arc tholeiites. $(La/Yb)_{CN}$ ratios vary from 0.89 to 2.02 with an average value of 1.23. Such low light-REE abundances in the amphibolites suggest that they were derived from the upper mantle source depleted in these elements. In view of geochemical characteristics showing strong enrichments of incompatible elements such as K and Rb, distinctive negative Nb anomalies, depletions of light-REE observed also in normal (depleted) mid-oceanic ridge tholeiites, and unfractionated immobile elements such as Y and Yb, the tholeiitic magmas, from which the parent rocks of the amphibolites were formed, would be generated from a depleted upper mantle source and contaminated by continental crustal materials en route to surface. Tectonomagmatic environment for the amphibolites can be assumed to be continental back-arc basin.

  • PDF

옥천변성대 북동부(충주-황강리 지역)내 앰피볼라이트의 암석 화학적 고찰

  • 유영복;김형식
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.132-132
    • /
    • 2001
  • 옥천변성대의 충주-황강리 지역내 앰피볼라이트의 기원암은 염기성 화성암으로 쏠레이아이트 계열의 변이질암에 속한다. Fe $O^{*}$/MgO값의 변화에 대하여 분별작용에 의해 영향을 받는 주성분 원소와 미량원소들의 변화를 보게되면 Ti $O_2$, Fe $O^{*}$와 불호정성 원소(incompatible element)인 Zr, Nb, Hf, Ta, Th 등은 분별작용동안 증가하는 반면 호정성 원소(compatible element)인 MgO, $Al_2$ $O_3$, Ni, Cr 등은 감소하는 경향을 보여주고 있다. Fe $O^{*}$/MgO, Ti $O_2$ 그리고 Fe $O^{*}$는 심해성 쏠레이아이트 영역으로부터 분화된 경향을 나타내 주고 있다. Ni, Cr은 Fe $O^{*}$/MgO값의 증가에 따라 급속히 감소하며 안정한 대륙과 해저화산의 영역에 도시되고 있으며 칼크-알칼리(CA)와는 관계가 없고 쏠레이아이트의 영역에서 변화 패턴을 보여주어 앰피볼라이트가 활동적인 대륙연변부의 지구조 환경보다는 안정한 대륙이나 해저화산과 관계가 더 있음을 시사한다. 경휘토류 원소(LREE)는 중휘토류 원소(HREE)에 비해 더욱 부화된 특성을 띠고 원자번호가 증가하면서 표준화된 휘토류 원소패턴의 경사가 점차 감소하는 경향을 보여주고 있다. 대부분의 시료들은 큰 Eu이상치를 갖고 있지 않아 마그마 정출 과정동안 사장석의 분별작용이 거의 수반되지 않았음을 지시하고 전체적인 휘토류 원소의 패턴은 거의 평행하게 나타나므로 기원 마그마가 유사함을 의미하고 있다. 비유동성 원소를 이용한 여러 판별도표들을 통해서 본암은 대륙성 현무암질암으로서 판내부 환경에서 유래되었으며 대륙내부 열곡의 알칼리 현무암과 대륙성 현무암 영역에 속하는 것으로 보아서 대륙지각내 열곡작용과 같은 장력운동에 수반되어 생성된 것임을 시사해 주고 있다. 앰피볼라이트의 지각혼성화를 평가하기 위해 이에 필요한 몇 개의 지화학적 매개변수를 계산한 결과 La/Ta, La/Nb, Nb/Th들의 값이 오염 안된 마그마의 값을 지시해 주어 본암이 지각혼성화 작용을 받지 않은 것으로 나타났다. 대부분의 시료들은 P-타입 MORB의 영역에 속하며 소수의 시료가 T-타입 MORB의 영역에 도시되고 있어 본 앰피볼라이트의 생성에는 양적으로 다른 두 가지의 유사한 마그마가 수반된 것으로 추정된다. 것으로 추정된다.

  • PDF

Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif (영남육괴 중부 무주 지역에 위치하는 선캠브리아기 화강편마암 및 앰피볼라이트 시추코아의 Sm-Nd 연대 및 지구화학적 특징)

  • Lee Seung-Gu;Kim Yongje;Kim Kun-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.127-140
    • /
    • 2005
  • The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.

Metamorphism of the amphibolites in the Hwanggangri area, the northeastern region of Ogcheon metamorphic belt, Korea (옥천변성대 북동부 황강리 지역내 앰피볼라이트의 변성작용)

  • 유영복;김형식;권용완;박종길
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.57-81
    • /
    • 2001
  • In the amphibolites of the Hwanggangri area, three metamorphic zones are established like hornblende-actinolite zone (H-AZ), hornblende zone (HZ) and diopside zone (DZ) by the main mineral assemblages. Hornblende zone and hornblende-actinolite zone develope away from the diopside zone that experienced the highest thermal effect. Thus, this pattern identifies the decreasing metamorphic grade of the contact metamorphism with increasing distance from the granitic pluton. The mineral assemblages of this rock are classified into six representative groups such as $\circled1$ actinolite+plagioclase+chlorite, $\circled2$ actinolite+hornblende+plagioclase+chlorite$\pm$epidote$\pm$biotite, $\circled3$ actinolite+hornblende+plagioclass$\pm$biotite$\pm$epidote, $\circled4$ hornblende+plagioclase$\pm$biotite$\pm$chlorite, $\circled5$ hornblende+plagioclase+diopside+actinolite$\pm$epidote$\pm$chlorite, $\circled6$hornblende+plagioclase+diopside$\pm$biotite$\pm$epidote. Two metamorphic events m recognized in the amphibolites of the study area that the first metamorphism is the regional metamorphism dominantly occurred in the whole Ogcheon metamorphic belt and it gave rise to the growth of actinolite at the core or center of the amphibole grains of coarse and medium size. Its metamorphic grade ranges from the greenschist facies to epidote-amphibolite facies. The second metamorphism overlapped is the contact metamorphism caused by the adjacent granitic pluton, and its metamorphic grade is thought to reach to the low pressure part of upper amphibolite facies. According to the calculation by TWEEQU thermobarometry and amphibole-plagioclase thermometry, the metamorphic temperature of initial regional metamorphism is $439-537^{\circ}C$ under pressure of 4.6-7.3 kb and its peak temperature and pressure are considered to reach to the range of 492-537 and 5.2-7.3 kb. And the temperature range of contact metamorphism occurred by intrusion of cretaceous granitic body, is $588-739^{\circ}C$ under pressure of 2.6-5.2 kb and its peak temperature and pressure are estimated as having the range of $697-739^{\circ}C$ and 3.8-5.2 kb that this amphibolites are estimated to pass through the metamorphic evolution of both the rise of temperature and the drop of pressure.

  • PDF

홍제사 화강암질편마암체의 성인과 공존하는 흑운모, 백운모 및 녹니석 사이의 화학적 평형

  • 이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.49-75
    • /
    • 1994
  • The Hognjesa granitic rocks can be subdivided into biotite granitic gneiss and microcline- perthite granitic gneiss according to their mineralogy and textures, which change gradationally each other. They consist mainly of biotite, muscovite, chlorite, microcline, plagioclase, perthite and quartz accompanied with sillimanite, garnet, and tourmaline in places. The replacement and/or alteration phenomena and relationships of coexisting minerals suggest that the granitic gneisses might be formed by regional metamorphism of upper amphibolite facies and granitization by partial melting accompanied to the regional metamorphism, and again at later effected by regional metamorphism of epidote-amphibolite or greenschist facies. The biotite, muscovite and chlorite formed during these metamorphism, show nearly similar chemical compositions, respectively, regardless to the rock phases and stages of formation. They show relatively stable chemical equilibrium between coexisting pairs. The granitization which formed granitic gneisses may be seemed to occur regionally by partial melting accompanied to the first regional metamorphism.

  • PDF

Granulite facies metamorphism of the Punggi area in the Sobeaksan Gneiss Complex -Crustal evolution and environmental geology of the North Sobeagsan Massif, Korea- (풍기지역 소백산편마암복합체의 백립암상 변성작용 -북부 소백산육괴의 지각진화와 환경지질-)

  • 권용완;신의철;오창환;김형식;강지훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.183-202
    • /
    • 1999
  • The Sobeaksan Gneiss Complex in the Punggi area is composed of mainly mignatitic gneiss, porphyroblastic gneiss, garnet granitic gneiss and biotitie granitic gneiss. Metamorphic grade increase gradually from the amphibolite facies of northwestern part to the granulite facies of southwestern part in the study area. Representative mineral assemblage in the amphibolite facies is biotite-muscovite-K-feldspar-plagioclase$\pm$garnet$\pm$epidote, needle shape or fibrous sillimanite occur in transitional zone from the amphibolite facies to the granulite facies. In the granulite facies, the garnet-Opx granulite shows garnet-orthopyroxene-biotite-plagioclase, the metabasite shows clinopyroxene-plagioclase$\pm$hornblende$\pm$orthopyroxene$\pm$garnet and the migmatitic gneiss shows garnet-biotite-sillimanite-cordierite$\pm$spinel as representative mineral assemblage. Retrograde metamorphism after the granulite facies metamorphism made corindum and andalusite in the migmatitic gneiss and the thin layer garnet between clinopyroxene and plagioclase in the metabasites. The peak P-T conditions of the migmatitic gneiss and the garnet-Opx granulite are $916^{\circ}C$/6.6 kb and $826^{\circ}C$/6.3 kb, respectively. The P-T condition of biotite and plagioclase inclusion, which indicates the progressive condition of the granulie facies, within garnet is $866^{\circ}C$/7.5 kb and that of rim composition of garnet and biotite is $726^{\circ}C$/4.6 kb, which infer the clockwise P-T path of the granulite facies metamorphism. The temperatures caculated by the rim composition of garnet and biotite in the migmatitic gneiss and garnet granitic gneiss have a wide range of $556-741^{\circ}C$, which indicate that the retrograde metamorphism after the granulite facies metamorphism has effected differently. It is difficult to determine the P-T condition of the biotite granitic gneiss because less occurrence and higher spessartine content of garnet. The P-T condition of the thin layered garnet between clinopytoxene and plagioclase in the metabasite is $635-707^{\circ}C$/4.1-5.3 kb. This texture indicates the isobaric cooling(IBC) condition of the retrogressive metamorphism. As a result, the metamorphic evolution of the Punggi area has undergone the isobaric cooling after the granulite facies metamorphism which has undergone the clockwise P-T path.

  • PDF

충주부근 활석 광상의 성인

  • 김형식;조동수
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.95-103
    • /
    • 1993
  • The geology of the talc ore deposits in the Chungju area consists of the Kyemyeongsan Formation, the Munjuri Formation, the Daehyangsan Quartzite, the Hyangsanni Dolomite, and the basic rocks of the Ogcheon belt. The talc ore occurs in the Hyangsanni Dolomite near the Daehyangsan Quartzite The mineral assemblages in the Hyangsanni Dolomite are \circled1calcite-tremolite-talc-quartz, \circled2calcite-talc-quartz, \circled3tremolite-calcite-dolomite, and \circled4calcite-dolomite-phlogopite-chlorite. Talc has almost the ideal composition($X_{Mg}$=Mg/(Fe+Mg)=0.98). Talc was formed in siliceous dolomite by the medium-pressure type regional metamorphism. The evidences for contact metamorphism and/or hydrothermal reaction are not clear. The metamorphic grade of the Hyangsanni Dolomite and its adjacent pelitic or basic rocks near the deposits corresponds to epidote-amphibolite facies or greenschist facies based on the, mineral assemblages of \circled1hornblendebiotite-muscovite-epidote-quartz \circled2biotite-chlorite-quartz, and \circled3hornblende-actinolite-plagioclasequartz. The formation of the talc deposits were caused by the following reactions due to greenschist facies metamorphism of siliceous-dolomitic rocks in the Hyansanni Dolomite. (I) 3 dolomite+4 quartz+$H_2O$= talc+ 3 calcite +3 $CO_2$; (11) 3 tremolite+ 2 $H_2O$+ 6 $CO_2$= 5 talc+ 6 calcite + 4 quartz. The minimum temperature of the talc-tremolite-quartz assemblage is about $434^{\circ}C$ from calcite thermometry and the carbon dioxide mole fraction in metamorphic fulid($X_{$CO_2$}$) is about 0.1 at assumed pressure, 3 kbar.

  • PDF