• Title/Summary/Keyword: 액화천연가스운반선

Search Result 39, Processing Time 0.03 seconds

Software-In-the-Loop based Power Management System Modeling & Simulation for a Liquefied Natural Gas Carrier (SIL 기반 액화천연가스운반선 전력관리시스템의 모델링 및 시뮬레이션)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1218-1224
    • /
    • 2017
  • With the increasing risk in building liquefied natural gas carriers (LNGC), pre-simulation of various scenarios is required for system integration and safe operation. In particular, the power management system (PMS) is an important part of the LNGC; it works in tight integration with the power control systems to achieve the desired performance and safety. To verify and improve unpredicted errors, we implemented a simulation model of power generation and consumption for testing PMS based on software-in-the-loop (SIL) method. To control and verify the PMS, numeric and physical simulation modeling was undertaken utilizing MATLAB/Simulink. In addition, the simulation model was verified with a load sharing test scenario for a sea trial. This simulation allows shipbuilders to participate in new value-added markets such as commissioning, installation, operation, and maintenance.

A Developing Tendency of Liquefied Natural Gas Carriers (액화천연가스 운반선(LNGC)의 발전 추세)

  • Lee, Dong-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.269-274
    • /
    • 2009
  • Recently, the construction of Liquefied Natural Gas Carriers(LNGC) is being promoted larger and larger depending on long voyage. In 1950 years, $5,000m^3$ class of LNGC had been changed to $71,500m^3$ class in 1973. and to $210,000-266,000m^3$ class in 2007. Especially, the system of main engines and cargo control, Re-liquefaction of natural gases have become possible in LNGC. This research deals with the LNG projects, world markets of energy and developing tendency of liquefied natural gas carriers.

  • PDF

The evaluation of LNG Cryogenic Secondary pump vibration (LNG 초저온 2차 펌프의 진동 원인 분석)

  • Koh J. P.;Kim J. H.;Hong S. K.
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.48-53
    • /
    • 2004
  • Korea Gas Corporation(KOGAS) is a Liquified Natural Gas(LNG) supplier through out the Korea. LNG, which is imported wholly from foreign countries, is compressed 1/600 for easy transportation and is stored in a liquid state in the storage tanks at Incheon, Pyeongtaek and Tongyeong. At LNG receiving terminals, LNG is vaporized to natural gas before supplying to City Gas Consumer or Power Plant. The secondary pump is a equipment which compress LNG from $10 kgf/cm^2$ to $70 kgf/cm^2$. The secondary pump at Tongyeong LNG receiving terminal is consisted of two pumps in one underground PIT, and is connected to supporting structures. It is therefore expected that there is a vibration problem with the pump and was found that high level vibration was occurred in a low frequency band(5${\~}$10Hz). In this paper, the vibration of secondary pump was analyzed, and the main cause of vibration was found out.

  • PDF

A numerical study on the fatigue evaluation of mark-III LNG primary barrier (수치해석을 이용한 Mark-III LNG 1차 방벽에 대한 피로 평가)

  • Kwon, Sun-Beom;Kim, Myung-Sung;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.337-344
    • /
    • 2017
  • The demand of liquified natural gas is increasing due to environmental issues. This reason has resulted in increasing the capacity of liquified natural gas cargo tank. The Mark-III type primary barrier directly contacts liquified natural gas. Also, the primary barrier is under various loading conditions such as weight of liquified natural gas and sloshing loads. During a ship operation, various loads can cause fatigue failure. Therefore, the fatigue life prediction should be evaluated to prevent leakage of liquified natural gas. In the present study, the fatigue analysis of insulation system including primary barrier is performed using a finite element model. The fatigue life of primary barrier is carried out using a numerical study. The value of principle stress and the location of maximum principle stress range are calculated, and the fatigue life is evaluated. In addition, the effects on the insulation panel status and the arrangement of knot or corrugation are analyzed by comparing the fatigue life of various models. The insulation system which has best structural performance of primary barrier was selected to ensure structural integrity in fatigue assessment. These results can be used as a design guideline and a fundamental study for the fatigue assessment of primary barrier.

Study on the Evaluation of Frictional Drag Reduction by Air Lubrication and the Arrangement of Air Injection Parts for a Liquefied Natural Gas Carrier (공기윤활에 의한 액화천연가스운반선의 마찰저항저감 평가 및 공기 분사부 배치에 대한 연구)

  • Kim, Hee-Taek;Kim, Hyoung-Tae;Kim, Hyun-Joe;Kim, Jung-Joong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.144-157
    • /
    • 2021
  • Brake Horse Power (BHP) reduction ratios by air injection to the underside of the hull surface in an actual ship are predicted using an unstructured finite-volume CFD solver and compared with the sea trial results. In addition, air lubrication system installed on the existing vessel is investigated to find a good solution for additional drag reduction. As a results, it is found that the thickness of the air layer should be minimized within a stable range while securing the area covered by the air layer as much as possible. Furthermore, the amount of frictional drag reduced by air injection is found to be independent of surface roughness and still effective on rough surface. Based on the results of this study, it is expected that systematic and reliable air lubrication system can be designed and evaluated using the proposed method.

LNG시장과 LNG Offshore Terminal 개발 동향

  • 김재신
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • 전 세계적으로 천연가스의 수요가 급격하게 증가함에 따라 천연가스의 생산 및 공급이 활발하게 이루어지고 있고, 향후 10년 간 천연가스의 사용량이 현재의 2배 이상이 될 것이라는 추측도 나오고 있다. 이에 따라 천연가스 생산지에서는 천연가스 액화 플랜트(Liquefaction Plant)와 저장 탱크(LNG Storage Tank), 수입하는 곳에서는 재기화 플랜트(Regasification Plant)와 저장 탱크, 그리고 LNG를 운송할 LNG 운반선의 신조프로젝트가 활발하게 진행되고 있다. 미국의 경우 911테러와 NIMBY 사고의 확대로 인하여 LNG 수입기지의 육상건설을 주민들의 반대하자 해상에 건조하려는 경향을 보이고 있으며, 이에 따라 여러 가지 형태의 LNG Offshore 터미널이 설계되고 있다. 향후 LNG의 급격한 수입이 예상되는 나라로는 미국, 중국, 인도 등이 있으며 수출국으로는 카타르가 급격하게 부상하고 있다. (중략)

  • PDF

Optimal Process Design of Onboard BOG Re-liquefaction System for LNG Carrier (LNG 운반선을 위한 BOG 재액화시스템 최적 설계)

  • Hwang, Chulmin;Lim, Youngsub
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.372-379
    • /
    • 2018
  • High-pressure gas injection engines (HPGI) took center stage in LNG carrier propulsion systems after their advent. The HPGI engine system can be easily modified to include a re-liquefaction system by adding several devices, which can significantly increase the economic feasibility of the total system. This paper suggests the optimal operating conditions and capacity for a re-liquefaction system for an LNG carrier, which can minimize increases in the total annualized cost. The installation of a re-liquefaction system can save 0.23 million USD per year when the cost of LNG is 5 USD/Mscf. A sensitivity analysis with different LNG costs showed that the re-liquefaction system is profitable when the LNG cost is higher than 3.5 USD/Mscf.

A study on the thermal characteristics of MOSS type LNG carrier (MOSS형 LNG 선박의 열공학적 특성에 관한 연구)

  • 이세동;송성옥;이종원;김춘식;최두열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 1998
  • This paper introduced the thermal characteristics of Moss Rosenberg Verft spherical tank type LNG Carrier. Especially described the temperature variation during cooling down condition. It is not easy task to calculate the temperature variation because of unsteady state condition. In this paper, computer simulation program is developed by using a Tomas Algorithm on unsteady state condition and compared with calculation results and experimental results on existing LNG Carrier voyage.

  • PDF

Development of FPGA Based HIL Simulator for PMS Performance Verification of Natural Liquefied Gas Carriers (액화천연가스운반선의 PMS 성능 검증을 위한 FPGA 기반 HIL 시뮬레이터 개발)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.949-955
    • /
    • 2018
  • Hardware-in-the-loop (HIL) simulation is a technique that can be employed for developing and testing complex real-time embedded systems. HIL simulation provides an effective platform for verifying power management system (PMS) performance of liquefied natural gas carriers, which are high value-added vessels such as offshore plants. However, HIL tests conducted by research institutes, including domestic shipyards, can be protracted. To address the said issue, this study proposes a field programmable gate array (FPGA) based PMS-HIL simulator that comprises a power supply, consumer, control console, and main switchboard. The proposed HIL simulation platform incorporated actual equipment data while conducting load sharing PMS tests. The proposed system was verified through symmetric, asymmetric, and fixed load sharing tests. The proposed system can thus potentially replace the standard factory acceptance tests. Furthermore, the proposed simulator can be helpful in developing additional systems for vessel automation and autonomous operation, including the development of energy management systems.

Effects of Opening Condition of the Fore Body on the Resistance and Self-Propulsion Performance of a Ship (일반상선의 선수 개구부가 저항 및 자항성능에 미치는 영향)

  • Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.78-85
    • /
    • 2014
  • LNG-RV has the additional equipments that enable to re-gastify liquefied LNG in LNG carrier. This vessel has Submerged Turret Loading(STL) system which transports gas through submarine terminal. When LNG-RV is operating at sea, the opening condition is formed by detaching STL equipment from a vessel. The primary objective of the current work is to estimate accurate speed loss for the opening condition of the LNG-RV employing numerical calculations and model tests. In the model tests, resistance and self-propulsion tests are carried out for the bare-hull and the opening condition without STL. In addition to these, flow visualization utilizing tuft is used to make the flow patterns visible, in order to get a qualitative or quantitative information for inner part in case of detaching the STL.