• Title/Summary/Keyword: 액체 추진제 로켓 엔진

Search Result 333, Processing Time 0.019 seconds

Modeling of the Liquid Rocket Engine Transients (액체로켓엔진 천이작동 예측을 위한 동특성 모델링)

  • Ko, Tae-Ho;Jeong, Yu-Shin;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • A program aiming at predicting dynamic characteristics of a Liquid Rocket Engine(LRE) was developed and examined to trace entire LRE operation. In the startup period, transient characteristics of the propellant flows were predicted and validated with hydraulic tests data. An arrangement of each component for the pipelines was based on an operating circuit of open cycle LRE. The flow rate ratio for the gas generator and the main chamber was determined to mimic that of real open cycle LRE. Individual component modeling at its transient was completed and was integrated into the system prediction program. Essential parameters of the component dynamic characteristics were examined in an integrated fashion.

A study on the combustion performance with Hydrogen Peroxide / Kerosene (과산화수소/ 케로신을 추진제로 한 200N급 엔진의 연소 성능에 관한 연구)

  • Kim, Young-Mun;Hwang, Oh-Sik;Lee, Yang-Suk;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.61-64
    • /
    • 2009
  • A study on the variation of combustion performance by oxidizer/fuel ratio was conducted. Shower head type injector was used. Injector propelled by liquid kerosene and liquid hydrogen peroxide. The designed operation condition for thrust and combustion pressure were 200N and 10bar. It is found that optimum oxidizer/fuel ratio.

  • PDF

LOx/kerosene Sub-scale LRE Firing Test Facility (액체산소/케로신 소형로켓엔진 연소시험설비)

  • Kim Seung-Han;Lim Byoung-Jik;Han Yeoung-Min;Seol Woo-Seok;Lee Soo-Yong;Moon Il-Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.166-169
    • /
    • 2004
  • This paper describes the design, installation and certification activity of a combustion test facility of subscale thrust chambers propelled by pressure-fed liquid oxygen and kerosene, and suggests major key issues considered at each development stage of the facility

  • PDF

A Preliminary Configuration Design of Methane/Oxygen Bipropellant Small-Rocket-Engine through Theoretical Performance Analysis (이론성능해석에 의한 메탄/산소 이원추진제 소형로켓엔진의 예비형상설계)

  • Bae, Seong Hun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • Design parameters required for Methane/oxygen bipropellant small-rocket-engine were derived through a theoretical performance analysis. The theoretical performance of the rocket engine was analyzed by using CEA and optimal propellant mixture ratio, characteristic length, and optimal expansion ratio were calculated by assuming chemical equilibrium. A coaxial-type swirl injector was chosen because of its outstanding atomization performance and high combustion efficiency compared to other types of injector and also a bell nozzle with 80% of its full length was designed. The rocket engine configuration with 1.72 MPa of chamber pressure, 0.18 kg/s in total propellant mass flow, and O/F ratio of 2.7 was proposed as a ground-firing test model.

액체 로켓 엔진에 있어서 추진제 공급 선점 시간이 점화 특성에 미치는 영향

  • Kim, Young-Han;Kim, Yong-Wook;Lee, Jae-Ryong;Park, Jung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.1-1
    • /
    • 2000
  • 액체로켓엔진에 있어서 연소실로 공급된 추진제의 안정적인 점화를 위해 추진제 공급의 선점 시간을 결정하기 위한 실험이 수행되었다. 사용된 추진제는 Jet A-1과 액체 산소이고 추진제의 공급은 가압 방식이다. 135$^{\circ}$의 각을 갖고 배열된 인젝터는 FOOF 타입의 비동류형 충돌형 인젝터이고 연소실 압력이 200psi가 되도록 설계되었다. 현재의 실험은 점화원으로서 TEAL(triethylaluminum)을 사용하여 쿼드렛 타입의 점화기의 안정적 점화 여부를 검증하는 것도 포함된다. 점화 특성 파악을 위해 인젝터 상류의 매니폴드 압력, 연소실 압력이 측정되었고 점화 과정 및 정상 상태로의 천이 과정에 대한 간접적 증거로서 화염 길이가 측정되었다.

  • PDF

Numerical Study of Chemical Reaction for Liquid Rocket Propellant Using Equilibrium Constant (평형상수를 이용한 액체로켓 추진제의 화학반응 수치연구)

  • Jang, Yo Han;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.333-342
    • /
    • 2016
  • Liquid rocket propulsion is a system that produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer. Monomethylhydrazine/dinitrogen tetroxide, liquid hydrogen/liquid oxygen and RP-1/liquid oxygen are typical combinations of liquid propellants commonly used for the liquid rocket propulsion system. The objective of the present study is to investigate useful design and performance data of liquid rocket engine by conducting a numerical analysis of thermochemical reactions of liquid rocket propellants. For this, final products and chemical compositions of three liquid propellant combinations are calculated using equilibrium constants of major elementary equilibrium reactions when reactants remain in chemical equilibrium state after combustion process. In addition, flame temperature and specific impulse are estimated.

Flow Characteristics of Cryogenic Oxidizer in Liquid Propellant Rocket Engine (액체로켓 엔진에서의 극저온 산화제의 유동 특성)

  • 조남경;정용갑;문일윤;한영민;이수용;정상권
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.15-23
    • /
    • 2002
  • In most cryogenic liquid rocket engines, liquid oxygen manifold and injector are not thermally insulated from room temperature environment fur reducing system complexity and the weight. This feature of cryogenic liquid rocket engine results in the situation that cryogenic liquid oxygen flow is easy to be vaporized especially in the vicinity of the manifold and the injector wall. The research in this paper is focused on two-phase flow phenomena of liquid oxygen in rocket engine. Vapor fraction was estimated by comparing the measured two-phase flow pressure drop in engine manifold and the injector with ideal single phase pressure drop. Heat flux into cryogenic flow is estimated by measuring the wall temperature on the engine manifold to examine boiling characteristics. Suitable correlations for cryogenic two-phase flow were also reviewed to see their applicability. In addition, the effect of vapor generation in liquid rocket engine manifold and injector on engine performance and stability was considered.

위성 발사체 추진제 가압용 열교환기 기초 설계

  • 이희준;한상엽;정용갑;길경섭;하성업;김병훈
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.74-74
    • /
    • 2004
  • 액체추진제를 사용하는 위성 발사체의 경우 추진제탱크에 저장된 추진제를 추력을 발생하는 연소실에 공급하기 위하여 헬륨 등의 가압제를 사용한다. 본 연구에서는 액체추진제 로켓엔진의 산화제인 극저온의 액체산소를 저장하고 있는 탱크 내부에 설치된 별도의 탱크에 저장된 극저온/고압의 헬륨을 고온으로 열팽창 시켜 추진제 탱크로 재유입하여 추진제를 가압하는 시스템에 사용되는 가압제 열팽창용 열교환기의 개발을 위한 기초 설계를 수행하였다. (중략)

  • PDF

Requirement Analysis of Propulsion System for Active Anti-Ship Missile Decoy (능동형 대함 유도탄 기만기의 추진 시스템 요구 조건 분석)

  • Moon, Yongjun;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2013
  • An active anti-ship missile decoy system was designed conceptually to analyze propulsion system requirements and feasibility to use a liquid bi-propellant rocket engine. Overall mass, size, and shape were assumed referring to specifications of Nulka which was developed by US and Australia in 1990s. The propulsion system was assumed to be a 1,000 N-class $H_2O_2$/kerosene rocket engine with a pressurized feed system. A three-degree-of-freedom optimal trajectory was calculated based on the assumptions, and mass budget was designed from the calculation results. It was found that the requirements for the propulsion system is that it shall be operated more than 100 sec; it shall be re-ignitable; it shall have a throttle capability of a range from 35% to 100% when the maximum thrust at sea level is 1,000 N.

Performance Dispersion Analysis of Gas Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체 로켓 엔진의 성능 분산 해석)

  • Choi Hwan Seok;Nam Chang Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.87-91
    • /
    • 2004
  • It is definitely required to control dispersion of the rocket engine performance in order to accomplish the mission of launch vehicle successfully. We performed the dispersion analysis of gas generator cycle LRE (liquid rocket engine) accompanied with ANASYN. As a result, the vacuum thrust dispersion of the engine was $+5.34\%,\;-5.27\%$ and the mixture ratio deviated $+9.07\%,\;-9.82\%$ from the nominal value due to the errors of components and engine inlet condition of propellants. By applying the gas generator regulator only, the dispersion of the engine performance increases. Error in turbine efficiency is the most influential factor to the dispersion of engine performance.

  • PDF