• 제목/요약/키워드: 액체특성 분류

검색결과 39건 처리시간 0.026초

액체의 특성 분류를 위한 스펙트럼 분석 방법 (Spectral Analysis Method for Classification of Liquid Characteristics)

  • 이종길
    • 한국정보통신학회논문지
    • /
    • 제20권12호
    • /
    • pp.2206-2212
    • /
    • 2016
  • 액체의 특성을 분류하기 위해서는 액상 물질의 유전율의 차이 등에 따른 특징적인 현상들을 파악하여야 한다. 이러한 현상들을 원격으로 탐지하여 추출할 수 있다면 폭발 가능성이 있는 위험물질의 검색이나 액체의 종류 등을 파악하는데 유용하게 활용할 수 있을 것이다. 따라서 본 논문에서는 광대역 전자파 신호를 이용하여 액체의 반사 및 투과신호를 하나의 송신 안테나와 2개의 수신 안테나에서 획득하여 분석하였다. 반사 또는 투과신호는 액체의 종류에 따라 주파수별 응답특성이 다르게 나타난다. 그러나 기존의 FFT 스펙트럼 추정방식은 주파수 해상도 문제 및 윈도잉에 의한 왜곡 때문에 적용하기 어렵다. 따라서 이러한 문제들을 최소화할 수 있는 고유벡터 해석 기법을 이용한 고해상도 스펙트럼 추정 및 분석 방법을 적용하였다. 이렇게 얻어진 결과들로부터 투과 또는 반사경로 들에 따른 액체의 종류별 첨두치 주파수들 및 대응전력 값들을 비교함으로서 다양한 액체들의 분류가 가능함을 보였다.

액체 로켓 추진기관의 연소불안정 현상

  • 윤명원;윤재건
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1997년도 제8회 학술강연회논문집
    • /
    • pp.13-23
    • /
    • 1997
  • 액체 로켓 추진기관의 개발에 가장 큰 장애요인은 연소불안정 현상이다. 연소불안정이 생기는 원인과 연소실내 음향효과에 따른 분류를 행하고 액체 로켓 추진기관 개발에서 발생하였던 연소 불안정 현상을 추진제 종류와 특성에 따라 살펴보았다. 또한 추진기관의 연소 안정성을 보장하기 위한 성능확인 시험과 연소 불안정을 억제하는 능동적, 수동적 방법에 관하여 기술하였다.

  • PDF

액체 미립화의 방법과 특징 (Method and characteristics of liquid atomization)

  • 이충원
    • 오토저널
    • /
    • 제5권4호
    • /
    • pp.10-16
    • /
    • 1983
  • 액체의 미립화는 기계산업분야 뿐만 아니라, 농약살포, 화학 공학의 분무건조, 반응의 촉진, 분 체제조, 식품공업 등 폭넓게 이용되며 또한 각분야에서 그 필요성이 강조되고 있다. 특히 기계 산업분야에서는 액체연료의 분무연소(boiler, gas turbine, 자동차용engine등) 원자로 노심의 spray cooling, spray drying, spray painting 등 그 이용도는 날로 증가되는 추세에 있다. 액체를 미 립화하는 이유는 각각의 분야나 사용하는 목적에 따라 다르지만, 대별하면 다음과 같다. (1) 액체의 단위 체적당 표면적을 증대시키기 위하여 (2) 직경이 작은 입자의 필요성 (3) 균일한 입경의 액적군을 얻기 위하여 등을 들 수 있다. 액체의 미립화에 대한 요구는 산업의 발당, 대기오염, 생energy 등의 문제가 중요시됨에 따라 다양화되고 있다. 따라서 응용면에서는 atomizer의 성능개선과 설계법, 새로운 미립화방법, 상업에의 분무이용기술, 분무계측법 등의 개발이 필요하게 된다. 액체미립화에서 취급하는 사항은 그 내용에 따라 다음과 같이 분류된다. (1) 액체의 미립화기구 : 기액계면의 불안정성과 분열기구에 관한 것으로, 액체형상으로써 액주, 액막 및 액적으로 나눌 수 있다. (2) 액체의 미립화 방법과 특성 : energy의 종유와 부가방식에 따랄 나누어진다. (3) 합체, 분산, 증발 등 분무의 운동이나 열적거동 (4) 분무입경이나 운동의 계측법과 특성도시 (5) 액체미립화의 각종응용 본보에서는 상기의 각 항목중, 특히 액체의 미립화방법과 분무특성에 대해서만 말하기로 한다.

  • PDF

다성분 인화성 액체의 Gel화 특성 연구

  • 강영구;정문호
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1999년도 춘계 학술논문발표회 논문집
    • /
    • pp.73-76
    • /
    • 1999
  • 인화성 액체는 소방법상의 4류 위험물로 분류되며 공업용 연료, 세척, 용제 등의 원료로서 그 사용빈도, 취급, 저장되는 양이 타 위험물에 비하여 매우 많을 뿐 아니라 그 종류도 다양하며 화학공업 분야에서 광범위한 사용이 이루어지고 있다. 이러한 대부분의 인화성 액체는 낮은 B.P. 빠른 증발속도, 저인화점의 물리적 특성으로 가연성 증기의 형성이 용이하고 화재 및 폭발의 위험성과 다량의 유독성 증기의 발생 위험이 존재하고 있다. (중략)

  • PDF

액정의 윤활특성에 관한 연구 (A study on the lubrication characteristics of Liquid Crystals)

  • 민지홍;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1992년도 제15회 학술강연회초록집
    • /
    • pp.60-65
    • /
    • 1992
  • 액정은 합성에 의해서 만들어지는 고분자 화합물로서 액체와 고체결정의 중간적인 특성을 갖는 물질이다. 따라서 액체와 같이 점도를 갖고 유동하며 고체와 같이 외부하중에 대하여는 탄성변형을 하므로 일반 윤활유보다 월등한 윤활특성이 기대된다. 액정은 분자배열에 따라 smectics, cholesterics, Nematics의 세종류로 나뉘어지며 Smectics는 다시 Smectic A, Smectic C등으로 분류되며 관심대상은 Smectic A이다. 본 연구에서는 평판 슬라이더 베어링의 간극에 액정층이 형성되어있을때 액정의 탄성계수, 침투계수 및 벌어짐계수가 베어링부하, 액정층의 유동현상등에 미치는 영향을 비선형 유한 요소법을 사용하여 해석하고 레이놀즈 이론해와 비교하였다.

  • PDF

2005년도 "하나로" 방사성폐기물 처리방법 및 저감화 대책

  • 이성효;임경환;허순옥;이문한;이형섭;설창우;황승렬
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 추계 학술대회 논문집
    • /
    • pp.109-110
    • /
    • 2005
  • 하나로에서 발생하는 방사성폐기물은 물리적 특성에 따라 고체, 액체 및 기체 방사성폐기물로 분류된다. 고체 방사성폐기물은 방문객 및 종사자들의 원자로실에 출입하여 업무를 수행하는 과정에서 발생하며, 액체 방사성폐기물은 계통의 누설, 보수작업, 실험장비 설치 등의 원자로 운영과정에서 주로 발생한다. 본 논문에서는 2005년도 하나로 시설의 방사선 관리 구역인 원자로실에서 발생된 고체, 액체 방사성폐기물의 발생량과 이들의 저감화를 위하여 취한 조치를 기술하였다.

  • PDF

감압온도 및 전해전류변화에 따른 감압증발특성 연구 (The Characteristics of Flashing Evaporation by Pressure Drop and Electrolysis Current)

  • 이기우;장기창;전운표;박기호;이계중;라호상;박일환
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 춘계 학술발표회 논문집
    • /
    • pp.177-182
    • /
    • 1999
  • 감압증발의 효율을 향상시키기 위한 방법으로 액주내의 기포생성에 의한 자기 미립화를 수반하는 과열액분류의 증발을 분사 감압증발이라고 하며, 특히 적절한 방법으로 액체내에 기포핵을 공급하는 경우에는 매우 좋은 증발성능이 얻어 진다는 것이 보고되어 있다. 따라서 본 연구에서는 온배수를 감압증발시켜 저온저압의 증기를 제조하여 MVR로부터 승온승압에 의해 고온의 증기를 얻기위한 것이 연구의 목적이므로, 증발효율향상을 위해 기포핵 공급용 전해전류장치를 설치하고, 감압증발용의 노즐을 원통형 튜브로 대체하기위해 튜브형 노즐로 부터 과열액을 급격히 감압시켜 자기미립화에 의한 증발을 유도하여 전해전류가 증발효율에 미치는 영향을 실험적으로 연구하고자 작동액체로써 물을 사용하고, 액체온도, 액체유량, 과열도 및 기포핵 공급용의 전해전류량을 변화시켜 실험을 수행하였다.(중략)

  • PDF

기액동축 분류의 유동장 및 미립화특성에 관한 연구 (Experimental Study on the Flow-field and the Atomization Characteristics of Gas-liquid phase Coaxial Jet)

  • 전흥신;김형택
    • 에너지공학
    • /
    • 제4권3호
    • /
    • pp.394-401
    • /
    • 1995
  • 본 연구는 중심부에 액체, 외주부에 산화제가 흐르는 기액 동축분류의 유동장에 대한 것이다. 기액 동축 분사기는 연료의 분사량이 적은 소형 연소시스템을 고려하여, 실험은 연공비(W1/Wa)가 0.6 이하를 대상으로, 물과 공기를 사용하여 분사조건에 따른 분무특성과 기액 2상 분무류의 기본구조를 조사하여 액적의 확산, 기액혼합특성에 대하여 검토하여 다음과 같은 결론을 얻었다. 반경방향 기상속도분포 및 액적유속분포는 분구직경 및 분사조건에 관계없이 정규분포에 가까운 형태를 취하고 있으며, 각각 식 (2) 및 (3)으로 나타낼 수 있다. 기상속도는 반치폭은 축방향에 따라 일정한 구배 (≒4.6)로서 증가하며, 기상만의 단상분류의 구배(≒6)에 비해서 완만하다. 액적유속 반치폭은 축방향에 따라 더욱 완만한 구배(≒3.1)로서 증가한다. 무차원 액적유속분포는 축방향에 따라 일정한 구배(n≒1.5)로서 감소한다. 액적의 확산은 상대적으로 기액유량비가 클수록 효과적으라고는 말할 수 없고, 최대 확산을 이루는 최적의 기액유량비가 존재한다.

  • PDF

염류 용액에서의 액체 플라즈마 방전과 히드록실라디칼에 관한 연구

  • 최은진;서정현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.134-134
    • /
    • 2015
  • 최근 액체 플라즈마에 대한 주된 이슈는 방전에 의해 발생하는 히드록실라디칼(OH-)과 버블이다. 액체 플라즈마를 이용한 다양한 응용분야에서는 히드록실라디칼에 주목하고 있다. 액체 플라즈마는 그래핀 파생물의 용액 친화도 향상을 위해 이용될 수 있다. 흑연이 포함된 과산화수소(H2O2) 용액에서 전기적인 방전으로 만들어진 히드록실라디칼로 그래핀 파생물의 용액 친화도를 향상시킨다. 이는 잠재적인 프린팅(printing) 기술 발전에 기대된다. 그리고 이 라디칼은 폐수에서 발암성의 트라이클로로아세트산(CCl3COOH)을 탈 염소하고 분해하는 역할을 하여 액체 플라즈마가 새로운 수처리 기술로 부상되고 있다. 또한 인체에서는 살균 작용을 하는 것 뿐만 아니라 단백질 고리를 끊는 역할을 하여 전립선 수술과 같은 인체수술에 적용될 수 있다. 최근 액체 플라즈마를 이용한 돼지 각막 임상수술에서 레이저와 필적할 정도로 매우 정밀하게 수술된 연구결과가 발표되어 인체 각막수술 적용에 기대된다. 이처럼 액체 플라즈마를 이용한 대부분의 응용분야에서 히드록실라디칼의 역할이 중요하다. 액체 플라즈마의 또 다른 이슈인 버블은 2가지의 역할을 한다. 첫 번째로 방전소스의 역할이다. 액체 속에 담긴 얇은 전극에 전압을 인가하면 전극 주변에서 강한 전기장의 발생으로 줄열(joule heating)에 의해 버블이 생성된다. 전극에서 버블이 생성되었을 때, 서로 다른 유전율을 가진 두 물질로 나누어진다. (버블 안은 공기로 상대 유전율 ${\varepsilon}r{\fallingdotseq}=1$, 용액은 ${\varepsilon}r{\fallingdotseq}=80$이다.) 시스템에 인가된 전압이 항복 전압(breakdown voltage)을 넘어서면 유전율이 상대적으로 낮은 버블내부에 강한 전기장이 걸리게 되어 방전이 일어난다. 만약 버블이 존재하지 않는다면 방전을 위해서 매우 높은 전압이 필요하다. 따라서 버블은 플라즈마 방전의 소스역할을 한다. 두번째로 버블은 전극의 부식을 방지하는 역할을 한다. 전극 부식은 주로 전기분해로 인한 산화반응에 의해 발생하는데 버블을 전극에 오래 머무르게 하면 부식을 방지할 수 있다. 이처럼 액체 플라즈마 시스템에서 버블의 역할들은 상당히 중요하다. 일반적으로 버블은 시스템에 인가하는 전원, 전극 극성 그리고 전압크기에 따라 거동이 달라진다. 시스템에 AC파워를 인가하면 버블은 주파수가 높을수록 전극에서 떨어지는 속도가 빨라지는 특성을 보인다. 핀 전극 극성이 음극일 때는 양극일 때보다 버블이 더 잘 생성된다. 또한 인가전압크기에 따라 거동이 달라지며 시스템에 같은 전압을 인가하여도 크기가 항상 같지 않고, 거동도 일관성을 보이지 않은 랜덤적인 모습을 보인다. 본 연구에서는 이 랜덤적인 버블의 거동을 정리하고 응용분야에서 중요하게 여기는 히드록실라디칼 생성에 대해 공부하기 위해 염류 용액(saline solution)에 핀(pin)-면(plane) 전극 구조를 설치하여 10Hz 주파수(1% duty cycle)를 가진 0-600V 구형펄스로 실험하였다. 실험을 통한 결과로서 랜덤적인 버블의 거동을 전극에서 버블이 떨어지는 속도와 플라즈마 특성에 따라 슈팅모드(shooting mode)와 유지모드(keeping mode) 2가지 모드로 분류하였다. 슈팅모드에서는 버블이 핀 전극에서 성장하지 못하고 빠른 속도로 떨어지는 모드로 플라즈마 방전이 잘 이루어지지 않는다. 반면 유지모드에서는 버블이 핀 전극에서 떨어지지 않고 지속적으로 성장한다. 이 모드에서는 펄스 시간 동안 하나의 버블로 연속적인 방전이 가능하다. 방전이 일어날 때 발생하는 히드록실라디칼의 생성은 버블 내부의 쉬스와 관련이 있다. 이 라디칼을 만들기 위해서는 높은 에너지가 요구되기 때문에 버블 내부의 쉬스(sheath)에서 만들어진다. 펄스 동안 쉬스는 주로 핀 전극 주변에서 유지되며 히드록실라디칼은 이곳에서 주로 만들어진다. 따라서 버블과 함께 쉬스도 성장하는 버블유지모드에서 슈팅모드보다 히드록실라디칼이 더 많이 생성된다.

  • PDF

ALE 유한요소법에 의한 충돌 액체 분류 냉각 유동 특성 해석 (Cooling Flow Characteristics of an Impinging Liquid Jet Using ALE Finite Element Method)

  • 성재용;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.43-57
    • /
    • 1999
  • The fluid flow and heat transfer in a thin liquid film are investigated numerically. The flow Is assumed to be two-dimensional laminar and surface tension is considered. The most important characteristics of this flow is the existence of a hydraulic jump through which the flow undergoes very sharp and discontinuous change. Arbitrary Lagrangian-Eulerian(ALE) method is used to describe moving free boundary and a modified SIMPLE algorithm based on streamline upwind Petrov-Galerkin(SUPG) finite element method is used for time marching iterative solution. The numerical results obtained by solving unsteady full Navier-Stokes equations are presented for planar and radial flows subject to constant wall temperature or constant wall heat flux, and compared with available experimental data. It Is discussed systematically how the inlet Reynolds and Froude numbers and surface tension affect the formation of a hydraulic jump. In particular, the effect of temperature dependent fluid properties is also discussed.