• Title/Summary/Keyword: 액체추진

Search Result 1,118, Processing Time 0.027 seconds

Design review of fuel vent-relief valve (연료 벤트/릴리프 밸브의 설계 분석)

  • Jang, JeSun;Kil, GyoungSub;Han, SangYeop;Park, Jong-Ho
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • A vent-relief valve performs as a safety-valve assembly for liquid propellant feeding system of space launch vehicle, which relives pressurant propellant tanks during the filling and the flight. At vent mode, valve is opened and closed by driving pneumatic pressure, and at relief mode, valve is automatically operated to set relief pressure. In this study, we have analyzed a basic layout of vent-relief valve which is designed using foreign LVs(Saturn) to satisfy requirements of Korean Space Launch Vehicle. The simulation model of vent-relief valve is designed by using the AMESim code to verify design parameters and evaluate pneumatic behaviors of valve. In this study, we performed dynamic characteristic simulations on design parameters. And we could predict opening/closing time and pressures, operating performances on design parameters. Using this results, we could suggest detail design and boundary conditions of design.

A Study of Spray Characteristics for the Slinger Injector System of Micro Turbo Jet Engine (초소형 터보제트엔진 슬링거 인젝터의 분무특성)

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.354-358
    • /
    • 2007
  • An experimental study was performed to understand spray characteristics of the slinger injector. system for the micro turbojet engine. In this fuel injection system, fuel is sprayed and atomized in the combustor by centrifugal forces of engine shaft. This experimental apparatus consist of a high speed rotating Spindle, slinger injector, pressure tank and acrylic case. The droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the droplet size(SMD) is largely affected to rotational speed, mass flow rate and the number of injection orifice. From the this experimental study, we could understand the spray characteristics of the slinger injection system and obtain the optimum shape of the slinger injector nozzle which is suitable for the micro turbojet engine.

  • PDF

Cold flow Test and Ignition Test of a 75-tonf-Class Thrust Chamber with Ablative Material for Technology Demonstration (75톤급 기술검증용 내열재 연소기의 수류시험과 점화시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Kim, Mun-Ki;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.26-37
    • /
    • 2011
  • A 75-tonf-class LRE(liquid rocket engine) thrust chamber with ablative material for technology demonstration was manufactured on the basis of development technologies of 30-tonf-class LRE. Hydraulic characteristics of the thrust chamber were examined through cold flow test and ignition test of low flow condition. Test result showed that hydraulic function was good. Side ignition method with igniter ring also showed a fine function of ignition in operating ways of static condition. But a close review is required to understand the phenomena of generation and extinction of specific frequencies showed in dynamic characteristics ways. To achieve these, a large combustion test facility which is capable of performing combustion test at design condition of the 75-tonf-class thrust chamber should be constructed as soon as possible.

Combustion Stability Rating Test under Low Pressure Condition of a 75-tonf-class LRE Thrust Chamber (75톤급 액체로켓엔진 연소기의 저압 조건에서 수행된 연소안정성 시험)

  • Lee, Kwang-Jin;Kang, Dong-Hyuk;Kim, Mun-Ki;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.92-100
    • /
    • 2010
  • Combustion stability rating tests of 75-tonf-class thrust chamber for technology demonstration were carried out at a low pressure. Two kinds of mixing heads were used in this study. One of them has injectors of 631 and the other has injectors of 721. Mixing head with injectors of 631 showed a self-oscillation instability at the chamber pressure of 30 bar. Mixing head with injectors of 721 showed that a high frequency combustion stability was maintained under the same pressure and the same mass flow rate. But mixing head with injectors of 721 generated a self-oscillation instability at the chamber pressure of 20 bar and it was found that stability boundary region was changed due to the configuration of a mixing head from these results.

Measurements of Ablations on Nozzle Throats of KL-3 Engines Using Image Analysis (영상분석을 통한 KL-3 엔진 노즐목 삭마량 측정)

  • 김영한;고영성;박성진;류철성;강선일;오승협
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In this research, it is intended to measure shape of the nozzle throat of the KL-3 engine, which is the main engine of the KSR-III rocket. For the purpose, an image-based method was invented to replace the 3D pointer, which is actually inaccessible to such large scale engines. As a result, our equipment showed satisfactory Performances. Analysing the results of experiments, we find that the pattern of ablation is determined by the spray pattern and that the process of thermal ablation phenomena can be categorized in three regimes - the first regime that the shape of nozzle throat is maintained and ablation is negligible, the second regime that saw-tooth form is developed and ablation is accelerated, and the third regime that the saw-tooth form is already established and the growth of ablation rate is reduced Also, we find that the ratio of area increase after 60 seconds combustion is +5.82% and conclude that the ratio is acceptable and satisfactory.

Acoustic Damping Swirl Injector for Reduction of Combustion Instability (연소불안정 저감을 위한 음향학적 감쇠기능성 스월 인젝터)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Kim, Dong-Jun;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.7-12
    • /
    • 2007
  • Swirl injector with multi-stage tangential entry was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and it's damping capacity is verified in atmospheric temperature. It has a finite mode of vibration and natural frequencies which can be tuned to the natural frequencies of a model combustion chamber. When the targeted injector for each modes is located at anti-node point, the amplitude of modes was decreased. And when the injector of large diameter is mounted, the split of mode which accompanies the decrease of amplitude appeared. From the experimental data, it is proved that if the location of injector mounted is located at an anti-node position of the targeted modes with proper volume, the amplitude of modes is decreased and the split of modes occurs at anti-node point.

  • PDF

One Dimensional Analysis on Alcohol Burner Flow for Turbopump Operation (터보펌프 구동용 알코올버너 유동 일차원 해석)

  • Kim, Seong-Lyong;Wang, Seung-Won;Han, Young-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • TPTF (Turbopump Real Propellant Test Facility) at Naro Space Center has used alcohol burner system to simulate the gas flow of gas generator of liquid rocket engine. During the test at TPTF, the temperature and pressure at turbine inlet were smoothly increased while those of the gas generator of engine were constant. Present research developed a simulation code for the burner and the piping system and applied to the system. The calculation results were in good agreement with the test, and confirmed quantitatively that the non-steadiness is due to the heat transfer of the pipe. While the insulation of the pipe is ineffective, the length has a large impact on the turbine inlet condition. The present research clarified the empirically estimation of test condition, and can be applied to determination of the following test conditions.

Linear Stability Analysis of a Baffled Rocket Combustor (배플이 장착된 로켓 연소기의 선형 안정성 해석)

  • Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.46-52
    • /
    • 2018
  • A simple Crocco's $n-{\tau}$ time delay model and linear analysis of fluid flow coupled with acoustics are combined to investigate the high frequency combustion instability in the combustion chamber of LOX/hydrocarbon engines. The partial differential equation of the velocity potential is separated into ordinary differential equations, and eigenvalues that correspond to tangential resonance modes in the cylindrical chamber are determined. A general solution is obtained by solving the differential equation in the axial direction, and boundary conditions at the injector face and nozzle entrance are applied in order to calculate the chamber admittance. Frequency analysis of the transfer function is used to evaluate the stability of system. Stability margin is determined from the system gain and phase angle for the desired frequency range of 1T mode. The chamber model with variable baffle length and configurations are also considered in order to enhance the 1T mode stability of the combustion chamber.

Air Similarity Performance Test of Turbopump Turbine (터보펌프용 터빈 공기상사 성능시험)

  • Lim Byeung-Jun;Hong Chang-Uk;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 2006
  • In liquid rocket engine turbopump, it is difficult to evaluate turbine performance for high pressure, high temperature circumstance. Turbine test is often done by using air at similarity condition so that the turbine can be tested at lower risk. This paper describes an air similarity test program of liquid rocket engine turbopump turbine. A test facility has been built to evaluate aerodynamic performance of turbines. The test facility consists of high pressure air supply system, mass flow rate measuring nozzle, test section, hydraulic break, exit orifice for pressure control, instrumentation and control system. This paper also presents how to decide the similarity conditions of the turbine test and describes how to control test conditions. Relative standard deviation of measurement parameter was less than 1% and measured turbine efficiency corresponded with analysis result within 2%.

Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows: Cavitation and Hydraulic Flip (오리피스 내부 유동조건에 따른 수직분사제트의 분열특성에 대한 연구)

  • 안규복;김정훈;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.72-75
    • /
    • 2003
  • In this research, we focused on the effects of the orifice internal flow such as cavitation and hydraulic flip. The breakup characteristics such as the breakup length and trajectory were measured by changing the orifice diameter (d), the orifice length/orifice diameter (L/d), the injection pressure and the shapes (sharp and round) of orifice entrance to provide a lot of conditions of the orifice internal flow. It is found that cavitation bubbles that occur inside the sharp-edged orifice make the liquid jet ejecting from the orifice turbulent. In the orifices (L/d = 5), the hydraulic flip phenomenon is shown when the injection pressure is high. In case cavitation occurs it breaks up more earlier than that in case of non-cavitation. In case hydraulic flip occurs, since the area of the liquid jet becomes small, the breakup length is also small as that in case of cavitation. But the liquid column trajectories have a similar tendency irrespective of cavitation.

  • PDF