• Title/Summary/Keyword: 액체산소

Search Result 362, Processing Time 0.03 seconds

Development of Real-Fluid Package Compatible with Chemkin for High-Pressure Kerosene/LOx Combustion (케로신/액체산소의 고압 연소해석을 위한 열역학/전달 물성치 해석 패키지 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.89-92
    • /
    • 2011
  • The modeling of thermodynamic non-idealities and transport anomalies is a crucial prerequisite to realistically simulate the mixing and combustion processes of liquid propellants injected above critical pressures. This study has developed a specific set of subroutines to calculate the thermodynamic and transport properties based on the generalized cubic equation of state (EoS) in a coupled manner with the standard chemical kinetics packages (Chemkin). The existing flamelet analysis code is extended with the real-fluid package and applied to numerical investigation of local flame structures of kerosene and liquid oxygen at high pressure conditions relevant to the actual rocket engines.

  • PDF

Cool Down Characteristics of 7 Tonf-class Liquid Rocket Engine for KSLV-II (한국형발사체 7톤급 액체로켓엔진 냉각 특성)

  • Im, Ji-Hyuk;Yu, Byungil;Lee, Kwang-Jin;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.50-57
    • /
    • 2021
  • Engine cool down process is necessary for the liquid rocket engines using cryogenic propellants in order to meet the requirement of engine inlet temperature. This paper evaluates the cool down characteristics of oxidizer supply pipeline and engine in prechill process prior to the engine firing tests, and calculate the quantity of liquid oxygen consumption.

Design and Verification of a Injector using Gas Methane and LOx as Propellants (가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증)

  • Jang, Jee-Hun;Min, Ji-Hong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.877-880
    • /
    • 2011
  • A coaxial swirl/shear injector using GCH4/LOx as propellants was degisned and manufactured. Flow analysis by Fluent was performed to decide the number of orifice and the rear shapes of inlet orifice etc. Flow rate of the injector was measured according to differential pressure and uniformity of injector's spray pattern was confirmed by a patternator. The results showed that the difference of flow rate was around 10% and the spray angle of oxidizer was $66^{\circ}$.

  • PDF

Design and Verification of a Injector using Gas Methane and LOx as Propellants (가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증)

  • Jang, Jee-Hun;Min, Ji-Hong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.658-661
    • /
    • 2011
  • A coaxial swirl/shear injector using GCH4/LOx as propellants was degisned and manufactured. Flow analysis by Fluent was performed to decide the number of orifice and the rear shapes of inlet orifice etc. Flow rate of the injector was measured according to differential pressure and uniformity of injector's spray pattern was confirmed by a patternator. The results showed that the difference of flow rate was around 10% and the spray angle of oxidizer was $66^{\circ}$.

  • PDF

Investigation of helium injection cooling to liquid oxygen chamber (헬륨분사를 통한 액체산소 냉각의 이론적 고찰 및 해석과 시험의 비교)

  • Gwon, O-Seong;Jo, Nam-Gyeong;Jeong, Yong-Gap;Lee, Jung-Yeop
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.134-142
    • /
    • 2006
  • Sub-cooling of cryogenic propellant by helium injection is one of the most effective methods for suppressing bulk boiling and keeping sub-cooled liquid oxygen before rocket launch. In order to design the cooling system, understanding of the limitations of heat and mass transfer is required. In this paper, an analytical model for the helium injection system is presented. This model's main feature is the representation of bubbling system using finite-rate heat transfer and instantaneous mass transfer concept. With this simplified approach, the effect of helium injection to liquid oxygen system under several circumstances is examined. Experimental results along with simulations of single bubble rising in liquid oxygen and bubbling system are presented with various helium injection flow rates, and with change of oxygen chamber pressure.

  • PDF

Analysis of the liquid oxygen consumption during operation of the ground oxidizer supply system (지상 산화제 공급시스템 운용 시 액체산소 소모량 분석)

  • Kim, Ji-Hoon;Park, Soon-Young;Park, Pyun-Goo;Yoo, Byung-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.656-657
    • /
    • 2010
  • The ground oxidizer supply system in the launch site of NARO space center had operated 9 times from the start of tests with ILV on May, 2009 to the 2nd flight test of the NARO vehicle. This system operated successfully for twice launches of the NARO vehicle. To judge the successful operation of the ground facility, it should have reproducibility and reliability. In this report, we have analyzed the liquid oxygen consumption of the system to judge of its reproducibility and it can be a reference for using this system for the next generation of KSLV system.

  • PDF

State of the Art in the Development of Methane/Oxygen Liquid-bipropellant Rocket Engine (메탄/산소 이원액체추진제 로켓엔진 기술개발 동향)

  • Kim, Jeong Soo;Jung, Hun;Kim, Jong Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.120-130
    • /
    • 2013
  • A study was conducted for the performance characteristics of methane taking recently the limelight in the world as a next-generation propellant, with the survey for state of the art in the development of methane/oxygen rocket engine being accompanied. Liquid methane as a rocket fuel has the favorable characteristics such as non-toxic, low cost, regenerative cooling capability, and potential for in-situ resource utilization (ISRU). The combination of liquid methane and liquid oxygen also provides the excellent performance including high specific impulse and low system mass. For these reasons, many researches have been actively carried out on the methane/oxygen engine, nevertheless, its technology readiness level is not that high enough just yet. Therefore, it is judged that it is the time to mitigate the technical gap with the space technology of advanced countries through a swift onset of the development of methane rocket engine.

Development of Propellant On-Board Feeding System of Pump-fed Liquid Rocket Propulsion System (터보펌프식 발사체 추진기관의 기체공급계 개발)

  • Cho, Nam-Kyung;Jeong, Yong-Gahp;Kwon, Oh-Sung;Han, Sang-Yeop;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.122-126
    • /
    • 2006
  • Two types of pressurization system and low weight feeding piping system are developed. With sub-system tests, ullage pressure control performance was verified for 1 step and 2 step pressurization system and the feeding performance of feeding piping system was also verified. The weight of the feeding piping system is low enough for the application of launch vehicle. In addition, LOX conditioning system is developed for avoiding geysering and LOX temperature rise. Integrated performance was verified through integrated on-board feeding system performance tests.

  • PDF

Performance Test and Calculation of Recirculation Line in Propellant Feeding System (기체공급계 재순환배관의 성능시험 및 계산)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gahp;Han, Sang-Yeop;Kim, Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • The performance test of recirculation line in propellant feeding system was carried out. Liquid oxygen was used as cryogenic propellant and helium was used as recirculation promotion gas. Tests were done in cases at atmospheric pressure and at pressure of 4 barg in the ullage space of propellant tank. Liquid oxygen recirculation flowrate with helium injection flowrate and temperature distribution along the line were measured. There was appropriate helium injection flowrate for gas-lift recirculation system. Test data were used to make calculation program by test data correlation method. In this paper the procedure of calculation was presented and the results were compared to test data.

A System Analysis of the Turbopump Type Liquid Rocket Engine (터보펌프식 액체로켓엔진의 시스템 해석)

  • Lee, Jin-Kun;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.109-115
    • /
    • 2004
  • A 1-D system design program has been developed for the preliminary design of the turbopump system in liquid rocket engines, which use LOx and kerosene as propellants. Gasgenerator cycle and staged combustion cycle were considered as turbopump type liquid rocket engine systems. In the system analysis, mass flow balance, thrust, specific impulse, mixture ratios, turbopump power, and turbine expansion ratio of engine system were analyzed. Results show that most of the parameters agree well with real engine parameters except gasgenerator. Therefore, the l-D system design program developed in this study can be used to derive the preliminary design parameters of a turbopump with any thrust level liquid rocket engine.