• Title/Summary/Keyword: 액체로켓엔진(liquid rocket engine)

Search Result 643, Processing Time 0.026 seconds

Dynamic Characteristics Prediction of Liquid Rocket Engine for the Transient Sequence Part-II : Propellent Feeding System Modelling and Validation (액체로켓엔진 천이 동특성 예측 Part-II : 추진제 공급 시스템 모델링 및 검증)

  • Ko, Tae-Ho;Jeong, Yu-Shin;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.181-189
    • /
    • 2010
  • 개방형 액체로켓엔진 시스템에 대한 동특성 예측 프로그램을 작성하였다. 이 프로그램을 통해 얻은 펌프 시동 시 시간에 따른 압력 및 유량 변화 결과를 수류실험장치를 구축하여 실험적으로 검증하였다. 수류실험장치는 실제 액체로켓엔진 추진제 공급 계통에서 구성품의 형태와 배치위치, 가스발생기와 주연소실로 분기되는 유량비를 기준으로 모사되었다. 측정 시 관로가 채워진 상태에서 펌프를 시동하였으며 펌프는 전동기로 구동된다. 동특성 예측 프로그램의 작성을 위해 구성품별 동특성 모델링을 수행하고 엔진 시스템을 기준으로 각 모델링을 순차적으로 통합하였다. 구성품의 동특성 파라미터를 측정 반영하였고 압력 밸런싱을 통해 수렴 조건이 결정된다. 수렴된 밀도와 유량을 가지고 다음 시간에서의 초기 입력 값으로 대체하여 계산을 수행하였다. 천이 작동 상태에서 엔진 시스템 내의 물리량 변화를 전산 예측과 더불어 실험적으로 측정하고 비교하였다.

  • PDF

A Thermal Analysis of Liquid Rocket Combustors using a Modelling of Film Cooling Performance (막냉각 모형을 이용한 액체로켓엔진 연소기의 열해석)

  • Kim, Hong-Jip;Cho, Won-Kook;Moon, Yoon-Wan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.85-92
    • /
    • 2006
  • A design program has been developed to predict film cooling performance of a liquid rocket engine. A thermal protecting effect of low mixture ratio gas layer has been analysed by CFD. A one-dimensional film cooling model based on the CFD results has been implemented to the previously developed design program of regenerative cooling. Satisfactory agreement has been achieved by comparing the predicted maximum heat flux at the throat of a subscale chamber and the average measured value, and the predicted nozzle average heat flux and the measured value for a full scale chamber with film cooling. It is ascertained that the film cooling is effective to reduce the throat heat flux in rocket engine chamber.

State of the Art in the Development of Methane/Oxygen Liquid-bipropellant Rocket Engine (메탄/산소 이원액체추진제 로켓엔진 기술개발 동향)

  • Kim, Jeong Soo;Jung, Hun;Kim, Jong Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.120-130
    • /
    • 2013
  • A study was conducted for the performance characteristics of methane taking recently the limelight in the world as a next-generation propellant, with the survey for state of the art in the development of methane/oxygen rocket engine being accompanied. Liquid methane as a rocket fuel has the favorable characteristics such as non-toxic, low cost, regenerative cooling capability, and potential for in-situ resource utilization (ISRU). The combination of liquid methane and liquid oxygen also provides the excellent performance including high specific impulse and low system mass. For these reasons, many researches have been actively carried out on the methane/oxygen engine, nevertheless, its technology readiness level is not that high enough just yet. Therefore, it is judged that it is the time to mitigate the technical gap with the space technology of advanced countries through a swift onset of the development of methane rocket engine.

Study on the Liquid Rocket Engine Health Monitoring and Emergency Protection System (액체로켓엔진 상태진단/비상보호시스템 연구)

  • Kim, Seung-Han;Nam, Chang-Ho;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.178-182
    • /
    • 2007
  • This paper reviews on the LRE health monitoring and emergency protection system to protect test object engine system and engine test facility, in case of various fault occurrence at LRE testing. General composition and major technical consideration of LRE health monitoring system and emergency protection system are reviewed. Moreover, some application of LRE health monitoring/emergency protection system to development test of major LRE component such as turbopump testing, gas generator and combustion chamber test are reviewed.

  • PDF

Static Structural Analysis of 75 tonf-class Engine with TVC actuation force (TVC 구동력을 고려한 75톤급 엔진 정적 구조 해석)

  • Yoo, Jaehan;Gwak, Junyoung;Kim, Okgu;Jeon, Seongmin;Jeong, Eunhwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.913-914
    • /
    • 2017
  • Structural analyses of a engine system is required in development stage for increasing structural reliability and reducing weight. Attitude of a launch vehicle during flight is controlled by combustion chamber rotation varying with TVC (thrust vector control) actuator displacements. In this study nonlinear static analysis is performed for a 75 tonf-class liquid rocket engine using before and after the TVC actuation.

  • PDF

Performance Dispersion Analysis and Applications of Gas Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체 로켓 엔진의 성능 분산 해석 및 활용)

  • Nam, Chang-Ho;Cho, Won-Kook;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.191-195
    • /
    • 2006
  • It is definitely required to control dispersion of the rocket engine performance in order to accomplish the mission of a launch vehicle successfully. A performance dispersion analysis was conducted for a gas generator cycle liquid rocket engine and the required pressure drops were estimated for engine tunning. As a result, the vacuum thrust dispersion of the engine was from +9.1% to -8.7% and the mixture ratio deviated from +9.7% to -9.6% from the nominal value due to the errors of components and the engine inlet condition of propellants. The required pressure drop in the LOx line to the combustor is higher than in the fuel line for same mixture ratio change.

  • PDF

Study on Heat Transfer Characteristic of Liquid Rocket Engine with Calorimeter (칼로리미터를 적용한 액체로켓엔진의 열전달 특성 연구)

  • NamKoung Hyuck-Joon;Han Poong-Gyoo;Kim Hwa-Jung;Kim Dong-Hwan;Lee Kyoung-Hun;Kim Young-Soo;Yoon Young-Bin;Kim Dong-Jun;Kim Sung-Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.213-219
    • /
    • 2005
  • Small liquid rocket engine (SLRE) with calorimeter were developed and tested to evaluate cooling characteristics in the liquid rocket engine. Therefore, cooling performance analysis was performed to predict the heat transfer coefficient on gas side wall in 10 calorimeter channel. A heat transfer empirical formula was determined by results of firing test and computational simulation.

  • PDF

A Literature Survey and Application of System Analysis of the Liquid Rocket Engine (액체로켓엔진 시스템 해석 문헌 고찰 및 응용)

  • Cho, Won-Kook;Park, Soon-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.328-331
    • /
    • 2008
  • A literature survey has been reported of the systems analysis on the liquid rocket engines. The analysis tools are mainly about the calculation of the rocket engine performance at the early days. However recent trend shows that researchers try to develop an integrated environment of distributed analysis tools for faster and cheaper analysis. This article presents the systems analysis results of the liquid rocket engine of gas generator cycle using the published mass estimating model. The specific impulse change for various thrust to weight ratio agrees qualitatively well with the published data.

  • PDF

Specific Impulse Variation of a Liquid Rocket Engine by Film Cooling (막냉각에 의한 액체로켓엔진의 비추력 변화)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.133-139
    • /
    • 2009
  • An analysis has been performed on the specific impulse for a liquid rocket engine of gas generator cycle. The present analysis method has been validated through the comparison of the optimal specific impulse for the 300t thrust conceptual engine against the published data. The engine specific impulse can be increased by applying film coolant decreasing the fuel pump head for regenerative cooling despite the decrease of specific impulse of the combustion chamber when the film coolant participates combustion more than the critical amount. The improved condition shows that higher combustion chamber pressure is achieved with less fuel pump head rise by additional film cooling.

  • PDF

Optimal Condition of Specific Impulse for a Liquid Rocket Engine with Film Cooling (막냉각이 적용된 액체로켓엔진의 비추력 최적조건)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.135-140
    • /
    • 2007
  • An analysis has been conducted of the optimal condition to maximize the specific impulse for a liquid rocket engine with film cooling. The present engine performance has been compared with the published conceptual design to be verified satisfactorily accurate. The optimal combination of film coolant flow rate and the regenerative cooling capacity has been found for maximum specific impulse. The optimal fuel pump pressure increases and the optimal film coolant flow decreases for a larger thrust engine. Higher turbine inlet temperature increases both the fuel pump pressure and the film coolant flow rate as the optimal condition. The coking temperature has the same qualitative effect as the turbine inlet temperature.

  • PDF