• 제목/요약/키워드: 액중 전기폭발

Search Result 12, Processing Time 0.024 seconds

Synthesis of Ni nanopowder by wire explosion in liquid media (액중 전기폭발법을 이용한 니켈 나노분말 제조)

  • Cho, Chu-Hyun;Jin, Yun-Sik;Ha, Yoon-Cheol;Lee, Kyung-Ja;Rhee, Chang-Kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.61-61
    • /
    • 2010
  • 니켈 니켈 와이어를 증류수 및 에탄올 등의 유기용매 중에서 펄스파워 기술을 이용하여 전기적으로 폭발 시켰다. 폭발에 의하여 생성된 입자들은 직경이 수 마이크로미터 에서 수 십 나노미터에 이르는 넓은 입도분포를 보였다. 본 연구에서는 원심분리기술을 이용하여 입자의 크기별로 분리 회수가 가능함을 증명하였다. 또한 유기용매 중에서 제조된 니켈분말에 탄소가 포함되어 있으며, 열처리를 통하여 제거가 가능함을 실험을 통하여 밝혔다.

  • PDF

액중 전기선 폭발법에 의한 나노금속분말의 제조 및 특성

  • Kim, Jin-Cheon;Bac, L.H.;Yun, Gi-Sang;Kim, Ji-Sun;Gwon, Yeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.52.1-52.1
    • /
    • 2010
  • 나노금속분말은 기존의 마이크론 입자와 다른 특이한 기계적, 전기적, 자기적 특성을 나타낸다. 나노금속분말 제조에서 가장 중요한 것은 오염되지 않은 고순도의 분말을 균일하고, 고분산된 입자를 제조하는 것으로 전기선폭발법(Electric Explosion of Wire, EEW)은 이러한 요구조건을 만족시킨다. 최근에는 전기선폭발법을 유체 내에 적용하여 분말을 제조하는 공정이 개발되었다. 이로 인해 고순도의 구형의 금속 나노입자를 얻을 수 있다. 본 연구에서는 물, 알코올, 에틸렌글라이콜 등 다양한 유체내에서 다양한 순금속 분말과 TiNi, SUS 등 나노합금분말을 제조하였다. 제조된 금속입자의 특성과 금속입자가 분산된 유체의 특성은 FE-SEM, HR-TEM, XRD, Turbiscan등으로 분석하였다.

  • PDF

Preparation of the Metallic Nanopowders by Wire Explosion in Liquid Media (액중 전기폭발에 의한 금속 나노분말 제조)

  • Cho, Chu-Hyun;Kim, Byung-Geol;Park, Sang-Ha;Kang, Chung-Il;Lee, Hong-Sik;Im, Geun-Hie
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.452-455
    • /
    • 2006
  • The technology of wire explosion have been used to product nanopowders. A new concept was proposed to produce metallic nanosized powders, which is wire explosion in liquid media. We have exploded the Ag or Cu wires of diameter of O.3mm, 40mm long, in the de-ionized water or acetone, respectively. Electrical energy of 1.1kJ was stored in 10uF capacitor and released to the wires through a triggered spark gap switch. The process was observed by high-speed camera. Those images showed that the powders were generated by vapor condensation in the shell formed by shock wave in the water. The particles were directly dispersed into the water with collapse of the shell. The sizes of Ag and Cu nanopowders were evaluated to 35nm and 17nm, respectively.

Synthesis of Ni Nanopowder by Wire Explosion in Liquid Media (액중 전기폭발법을 이용한 니켈 나노분말 제조)

  • Cho, Chu-Hyun;Kang, Chung-Il;Ha, Yoon-Cheol;Jin, Yun-Sik;Lee, Kyung-Ja;Rhee, Chang-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.736-740
    • /
    • 2010
  • Nickel wires of 0.8 mm in diameter and 80 mm in length were electrically exploded in liquid media such as water, ethyl alcohol. The distribution of particle sizes was broad from a few micrometers to tens of nanometer. It was identified that the particles could be classified according to its sizes by using centrifugal separator. The powder prepared in distilled water showed mainly pure metallic Ni phase although a little oxide phase was observed. The powders prepared in ethyl alcohol showed complicated unknown phases, which is attributed to the compound of carbon in the organic liquid. This unknown phase was turned to pure metallic Ni phase after heat treatment.

Synthesis and Analysis of Zn Nanopowders by Wire Explosion In Liquids (액중 전기폭발법을 이용한 아연 나노분말 제조 및 분석)

  • Cho, Chu-Hyun;Kim, Doo-Hun;Choi, Si-Young;Kang, Chung-Il;Moon, Gap-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.824-829
    • /
    • 2012
  • Zn wires have been electrically exploded in methanol or distilled water using the pulsed power technologies. The nanopowders produced by the explosions have been observed by using SEM and TEM, and analyzed its phase by using EDS and XRD. The nanopowders produced in distilled water showed ZnO phase only. On the other hands, the nanopowder produced in methanol showed mixed phases with Zn and ZnO. The HR-TEM images of the nanopowders produced in methanol showed that the some particles have been coated with carbon like materials. It is considered that the carbon coatings could be depended on the positions of the particles during the plasma state formed by explosion.

Fabrication of Carbon-coated Tin Nano-powders by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties (액중 전기선 폭발법을 이용한 비정질 탄소가 코팅된 주석 나노분말의 제조 및 전기화학적 특성)

  • Kim, Yoo-Young;Song, Ju-Suck;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.317-324
    • /
    • 2016
  • Tin is one of the most promising anode materials for next-generation lithium-ion batteries with a high energy density. However, the commercialization of tin-based anodes is still hindered due to the large volume change (over 260%) upon lithiation/delithiation cycling. To solve the problem, many efforts have been focused on enhancing structural stability of tin particles in electrodes. In this work, we synthesize tin nano-powders with an amorphous carbon layer on the surface and surroundings of the powder by electrical wire explosion in alcohol-based liquid media at room temperature. The morphology and microstructures of the powders are characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The electrochemical properties of the powder for use as an anode material for lithium-ion battery are evaluated by cyclic voltammetry and a galvanometric discharge-charge method. It is shown that the carbon-coated tin nano-powders prepared in hexanol media exhibit a high initial charge specific capacity of 902 mAh/g and a high capacity retention of 89% after 50 cycles.

Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics (액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성)

  • Koo, Hye Young;Yun, Jung-Yeul;Yang, Sangsun;Lee, Hye-Moon
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

Fabrication of Fe3O4/Fe/Graphene nanocomposite powder by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties (액중 전기선 폭발법을 이용한 Fe3O4/Fe/그래핀 나노복합체 분말의 제조 및 전기화학적 특성)

  • Kim, Yoo-Young;Choi, Ji-Seub;Lee, Hoi-Jin;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.308-314
    • /
    • 2017
  • $Fe_3O_4$/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, $Fe_3O_4$/Fe nanocomposites are fabricated under the same conditions. The $Fe_3O_4$/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The $Fe_3O_4$/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the $Fe_3O_4$/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for $Fe_3O_4$/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.

Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part 2. Effect of Solvent and Comparison of Fabricated Powder owing to Fabrication Method (액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 2. 용매의 영향 및 제조 방법에 따른 분말입자의 비교)

  • Ryu, Ho-Jin;Lee, Yong-Heui;Son, Kwang-Ug;Kong, Young-Min;Kim, Jin-Chun;Kim, Byoung-Kee;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.112-121
    • /
    • 2011
  • This study investigated the effect of solvent on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid and compared the alloy particles fabricated by three different methods (PWE in liquid, PWE in Ar, plasma arc discharge), for high temperature oxidation-resistant metallic porous body for high temperature soot filter system. Three different solvents (ethanol, acetone, distilled water) of liquid were adapted in PWE in liquid process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. The alloy powder synthesized by PWE in ethanol has good particle size and no surface oxidation compared to that of distilled water. Since the Fe-based alloy powders, which were fabricated by PWE in Ar and PAD process, showed surface oxidation by TEM analysis, the PWE in ethanol is the best way to fabricate Fe-based alloy nano powder.