• 제목/요약/키워드: 액적 증발

검색결과 118건 처리시간 0.025초

유화연료 단일액적의 증발 및 연소거동에 관한 실험적 연구 (An Experimental Study on Vaporization and Combustion Behavior for Single Droplets of Water-in-Oil Emulsified Fuels)

  • 박민철;김병석;오상헌
    • 한국연소학회지
    • /
    • 제5권1호
    • /
    • pp.81-89
    • /
    • 2000
  • An experimental study has been carried on single fuel droplets of water-in-light oil emulsions in an electric furnace to elucidate the dominant factor for the occurrence of micro-explosions. The tests were carried out by changing the following four parameters; the surfactant, the ratio of water to light oil, ambient temperature in electric furnace, and four kinds of fuels having different viscosity(light-oil, kerosene, iso-octane, bunker fuel). The result shows that micro-explosion phenomena is dominated without surfactant and below 30% of water content. Explosion-time is affected by ambient temperature and viscosity of used fuel.

  • PDF

복사가열조건에서 표면 거칠기에 따른 액적의 증발 냉각 (Evaporation Cooling of Droplet due to Surface Roughness under Radiative Heat Input Condition)

  • 방창훈;권진순;예용택
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.14-19
    • /
    • 2004
  • The objective of the present work is to examine evaporation cooling of droplet due to surface roughness under radiative heat input condition. The surface temperatures varied from $80\~160^{\circ}C$ on aluminum alloy (AL 2024) and surface roughness was $0.18{\mu}m,\;1.36{\mu}m$. The results are as follows; Regardless of surface roughness under radiative heat input condition, as droplet diameter is larger, the in-depth temperature of solid decreases and evaporation time increases. In the case of $0.18{\mu}m\;and\;1.36{\mu}m$ of surface roughness, the larger the surface roughness is, the less the evaporation time is and the larger the temperature within the solid is. In the case of $Ra=0.18{\mu}m$ evaporation time and time averaged heat flux for radiative heat input case is shorter than for the conductive case.

고온표면에 부착된 액적의 증발형상 변화 (The Evaporation Shape of Deposited Droplet on the Hot Surface)

  • 방창훈
    • 한국안전학회지
    • /
    • 제20권1호
    • /
    • pp.68-74
    • /
    • 2005
  • The objective of the present work is to examine the evaporation shape of deposited droplet on the hot surface. this paper performed the experiments as following conditions: (a) the surface temperature is within the range between $80^{\circ}C$ and $95^{\circ}C$ in the conduction and radiation, (b) droplet diameter is 3.0mm. The results are as follows; while droplet evaporates, droplet's radius is kept changelessly to $70\%$ evaporation time and droplet's shape is kept changelessly after. In case use Constant radius model, about $10\%$ is appearing high than value that time-averaged heat flux applies Inverse heat conduction.

Multi-zone 모델에 의한 디젤엔진에서의 분사율 변화에 따른 배기가스 특성에 관한 연구 (A Study on the Effect of Injection Rate on Emission Characteristics in D.I. Diesel Engine by Multi-zone Model)

  • 황재원;갈한주;박재근;김만호;;채재우
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.94-103
    • /
    • 1999
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed . This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. It takes into consideration, on a zonal basis ,detailed of fuel spray formation, droplet evaporation, air-fuel mixing, spray wall interaction, swirl , heat transfer, self ignition and burning rate . The emission model is considered with chemical equipment , as well as the kinetics of fuel. NO and soot reactions in order to calculate the pollutant concentrations within each zone and the whole of cylinder . The accuracy of prediction versus experimental data and the capability of the model in predicting engine heat release, cylinder pressure and all the major exhaust emissions on zonal and cumulative basis., is demonstrated. Detailed prediction results showing the sensitivity of the model bv various injection rates are presented and discussed.

  • PDF

급속압축장치에서 탄소 나노입자가 첨가된 연료 액적의 증발 및 연소 특성에 관한 실험적 연구 (Experimental Study on Evaporation and Combustion Characteristics of Fuel Droplet with Carbon Nano-particle in RCM)

  • 안형진;원종한;백승욱;김혜민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.209-211
    • /
    • 2015
  • Evaporation characteristics of a single droplet of carbon nanofluids were investigated in a rapid compression machine(RCM). n-Heptane and carbon black N990 were used to synthesize the carbon nanofluids. RCM is an experimental set-up to simulate a single compression stroke of reciprocating engine. Temperature and pressure in a reaction chamber were measured during the compression stroke. After the piston reaches top dead center(TDC), temperature and pressure decreased due to the heat loss at wall. In that process, a single droplet of carbon nanofluids underwent unsteady condition. A single droplet was put at the center of reaction chamber. Thermocouple whose tip is $50{\mu}m$ was used not only to measure transient bulk temperature, but also to suspend the droplet. The picture of single droplet was taken using high speed camera with a frame rate of 500 fps. From those pictures, the droplet diameter was measured by visual basic program.

  • PDF

표면 거칠기에 따른 액적의 증발 냉각 (Evaporation Cooling of Droplet due to Surface Roughness)

  • 방창훈;권진순;예용택
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.29-33
    • /
    • 2003
  • The objective of the present work is to examine evaporation cooling of droplet due to surface roughness on a heated surface. The surface temperatures varied from 80-$160^{\circ}C$ on aluminum alloy (AL 2024) md surface roughness was 0.l8$\mu\textrm{m}$ 1.36$\mu\textrm{m}$. The results are as follows; Regardless of surface roughness, as droplet diameter is bigger, the in-depth temperature of solid decreases and evaporation time increases. In the case of same initial temperature on the heated surface, as droplet diameter is smaller and small surface roughness is bigger, evaporation time decreases and time averaged heat flux increases.

고착 액적 증발면의 정밀 관측을 위한 전반사 형광 현미경 기법 개발 (Development of a Total Internal Reflection Fluorescence (TIRF) Microscopy for Precise Imaging the Drying Pattern of a Sessile Droplet)

  • 조원호;이진기
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.65-74
    • /
    • 2023
  • Compared to epifluorescence(EPI) microscopy which captures fluorescence from the entire depth of sample, total internal reflection fluorescence(TIRF) can selectively visualize only a single surface of it. TIRF uses a thin evanescent field generated by the total internal reflection of laser light on surface. However, conventional TIRF system are designed for total internal reflection to occur at the upper surface of sample, making them unsuitable for sessile droplet imaging. We designed a TIRF system suitable for a sessile droplet imaging by utilizing slide glass as a lightguide. We presented the details for constructing the TIRF system using a prism, slide glass, air slit, and optical trap. Then, we compared the TIRF with EPI by imaging the droplet with fluorescent particles during its drying process. As a result, TIRF allows us to distinctly visualize the drying pattern on the bottom surface of droplet.

LDV계측에 의한 동축노즐의 분무특성 연구 (A study on the spray characteristics of a coaxial nozzle by LDV measurement)

  • 윤석주;노병준
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1613-1620
    • /
    • 1990
  • 본 연구에서는 일반적인 레이저 유속계를 사용하여 광전 증폭관내에 핀흘 대 신에 슬릿(slit)을 장치하고 광전증폭관을 측정영역에 90˚가 되도록 설치하여 in-situ calibration을 수행함으로써 분무의 입경과 속도를 동시에 계측할수 있다는 Yoon의 결과를 이용하고 모든 입자들의 궤적은 동일한 확률을 갖는다는 Yule와 Holve, Self의 가정을 기초로한 수학적인 Deconvolution에 의하여 계측방법에 발생되는 모순 점을 해결하였다. 일반적으로 분무특성해석을 위해서는 분무를 지배하는 기하학적인 변수, 입경분포, 액적의 속도분포, 밀도분포, 입경과 속도의 상관계수, 입자의 증발율 등이 규명 되어야하는데 본 연구에서는 이상류 동축노즐을 제작하고 이의 분무특성을 해석하기위하여 액적의 속도분포, 입경분포, 입경과 속도의 상관계수, 수밀도분포 등 을 계측하였다.

은 나노와이어 특성에 따른 커피 링 현상에 대한 실험적 연구 (Experimental Study on Coffee-ring Effect of Silver Nanowire with Different Parameters)

  • 강기호;;성백훈;이형동;변도영
    • 한국가시화정보학회지
    • /
    • 제15권2호
    • /
    • pp.16-20
    • /
    • 2017
  • A coffee-ring effect is from capillary flow by different evaporation rate across the droplet. The capillary flow tends particles to accumulate at the edges of the droplet and makes the ring-shaped stain pattern. These coffee-ring formation and suppression of coffee-ring have been a critical role in printing and coating technologies. In this study, we present the experimental study on coffee-ring effect of silver nanowire inside the evaporating sessile droplet. Size and concentration effect of nanowires at coffee-ring effect has been investigated. From the coffee-ring, we observed the regimes of connected rings and disconnected ones and measure the resistivity of single ring pattern with different nanowire length.

陰影寫眞의 畵像解析에 의한 디이젤 噴霧의 硏究 (A Study on the Diesel Spray by Means of Image Analysis of Shadow Photographs)

  • 장영준;신본무정;동경공
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.319-327
    • /
    • 1988
  • 본 논문에서는 비증발 디이젤 분무의 고속도음영사진을 화상해석 함으로서, 분무선단지달거리와 분무용 이외에 어떤 연문의 분무속 전체 액적군의 평균입자경(sauter mean diameter)과 분무내 연료농도분포를 동시에 측정할 수 있는 새로운 측정법을 제시한다.