• Title/Summary/Keyword: 액적 분열

Search Result 81, Processing Time 0.024 seconds

LES of Breakup and Atomization Characteristics of a Liquid Jet into Cross Turbulent Flow (난류 횡단류에 수직 분사 되는 액주의 분열 및 기화 특성에 관한 LES)

  • Yang, Seung-Joon;Koo, Ja-Ye;Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • LES(Large eddy simulation) of breakup and droplet atomization of a liquid jet into cross turbulent flow was performed. Two phase flow of gas and liquid phases were modeled by the mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid droplet respectively. The breakup process of a liquid column and droplets was observed by implementing the blob-KH wave breakup model. The penetration depth into cross flow was comparable with experimental data for several variants of the liquid-gas momentum flux ratio by varying liquid injection velocity. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

Papers : A Study of Numerical Impinging Jet Models for a Like - doublet Injector of Liquid Rockets (논문 : 액체 로켓의 Like - doublet 인젝터의 충돌 제트 수치 모델에 대한 연구)

  • Park,Jong-Hun;Jeong,Gi-Hun;Yun,Yeong-Bin;Kim,Yeong-Han;Lee,Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.64-76
    • /
    • 2002
  • 기존의 이론적 연구와 실험적 연구를 바탕으로 충돌 제트의 수치 모델을 개발하였다. 본 모델은 like-doublet 충돌제트로부터 생성되는 액적의 모든 특성을 액막이 분열되는 시점에서 결정한다. 액적 특성을 결정하기 위해 이론적 연구로부터 얻어진 액막 두께, 액주의 직경, 액적 크기와 실험적 연구로부터 얻어진 액막/액적 속도, 액막 분열 거리, 분열 주파수, 액적 질량 유량 분포를 이용하였다. 액적의 질량 유량 분포는 Laplace 분포로부터 표준 편차를 이용하여 모사하였다. 또한 실험 결과를 이용하여 액막 분열 거리, 분열 주기, 표준 편차에 대한 경험식을 유도하였다. 개발된 모델은 정성적인 분무 패턴뿐만 아니라 정량적인 SMD 및 질량 유량 분포에서 실험 결과와 잘 일치한다.

Stochastic Model Comparison for the Breakup and Atomization of a Liquid Jet using LES (LES 해석에서 액체제트의 분열에 대한 확률론적 분열 모델링 비교)

  • Yoo, YoungLin;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A three-dimensional two-phase large eddy simulation(LES) has been conducted to investigate the breakup and atomization of liquid jets such as a diesel jet in parallel flow and water jet in cross flow. Gas-liquid two-phase flow was solved by a combined model of Eulerian for gas flow and Lagrangian for a liquid jet. Two stochastic breakup models were implemented to simulate the liquid column and droplet breakup process. The penetration depth and SMD(Sauter Mean Diameter) were analyzed, which was comparable with the experimental data.

LES on breakup and atomization of a liquid jet into cross turbulent flow in a rectangular duct (사각 덕트내 난류 횡단류 유동장에 분사되는 액체 제트의 분열과 미립화에 관한 LES 해석)

  • Yoo, Young-Lin;Han, Doo-Hee;Sung, Hong-Gye;Jeon, Hyuk-Soo;Park, Chul-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.290-297
    • /
    • 2016
  • A two-phase Large Eddy Simulation(LES) has been conducted to investigate breakup and atomization of a liquid jet in a cross turbulent flow in a rectangular duct. Gas-droplet two-phase flow was solved by a coupled Eulerian-Lagrangian method which tracks every individual particles. Effects of liquid breakup models, sub-grid scale models, and a order of spatial discretization was investigated. The penetration depth in cross flow was comparable with experimental data by varying breakup model and LES scheme. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

Numerical Study an Drop Breakup in Air-Assisted Spray Using the TAB Model with a Modified Drop Drag Model (TAB 모텔과 수정된 액적 항력 모텔을 이용한 공기 보초 분무에서의 액적 분열에 대한 수치적 연구)

  • 고권현;유홍선;이성혁;홍기배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.87-95
    • /
    • 2002
  • The aim of this article is to perform the numerical simulation far drop drag and breakup processes in air-assisted sprays using the Taylor analogy breakup (TAB) model with a modified drop drag model, in which a random method is newly used to consider the variation of the drop's frontal area. The predicted results for drop trajectory and Salter mean diameter (SMD) were compared with experimental data and the simulation results using the earlier published models such as TAH model, surface wave instability (Wave) model, and Wave model with original drop drag model. In addition, the effects of the breakup model constant, Ck, on prediction of spray behaviors were discussed. The results shows that the TAB model with the modified drop drag model is in better agreement with experimental data than the other models, indicating the present model is acceptable for predicting the drop breakup process in air-assisted sprays. At higher Weber numbers, the smaller Ck shows the best fitting to experimental data. It should be noted that more elaborated studies is required in order to determine the breakup model constant in the suggested model in the study.

Visualization of Supercritical Mixed Hydrocarbon-Fuel Droplet (혼합 탄화수소계 초임계 상태 연료의 액적 거동 가시화)

  • Song, Juyeon;Song, Wooseok;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.711-716
    • /
    • 2020
  • Injection visualization of heated mixed simulant droplets based on hydrocarbon fuel was performed under supercritical state environment. Mixed simulant consisted of Decane and Methylcyclohexane with different critical pressure and critical temperature. Flows injected into the supercritical state environment created droplet by Rayleigh breakup mechanism, and the Oh number and Re number were determined to confirm the breakup area. The temperature of the mixed simulant varied from Tr=0.49 to Tr=1.34. The flow rate was maintained at 0.7 to 0.8 g/s. Droplet became shorter in breakup length as heated and into a lumped form. Second droplet was formed and when Tr=1.34, the phase was not visible in the supercritical state with local unsteady flow.

An Experimental Study of Breakup of Impinging Droplets on a Hot Surface (표면 충돌 액적의 분열에 관한 실험적 연구)

  • Ko, Y.S.;Chung, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.85-92
    • /
    • 1994
  • Characteristics of breakup of a liquid droplet impinging on a hot surface has been investigated experimentally by using decane fuel. Factors influencing droplet breakup are surface temperature, impinging velocity, droplet diameter and incident angle. Droplets impinging on a hot surface begins to breakup at $220{\sim}235^{\circ}C$. This temperature varies with impinging Velocity, droplet diameter and incident angle. For wall temperature of $220{\sim}245^{\circ}C$ and above $270^{\circ}C$, breakup probability increases as impinging velocity increases showing S shape curve. For $245{\sim}265^{\circ}C$, a local minimum heat transfer rate occurs. In this temperature range, breakup probability shows nonmonotonous behavior as functions of impinging velocity. As droplet diameter decreases, impinging velocity required for droplet breakup increases. An optimum impinging angle for droplet breakup exists which are found to be about $75^{\circ}$.

  • PDF

Visualization of Breakup and Atomization Processes in Non-evaporating Diesel Sprays (비증발 디젤분무의 분열과 미립화 과정의 가시화)

  • 원영호;김우태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • Two-dimensional laser visualization methods have been used in the study of breakup and atomization processes of non-evaporating diesel sprays. A single-hole spray injected into a quiescent atmospheric environment was visualized by the LIF(Laser Induced Fluorescence) and scattering technique. The LIF technique could be implemented to take the images which are magnified enough to show the shape of liquid ligaments and small droplets. The spontaneous scattering and fluorescent images of sprays were also taken to investigate the atomization of droplets. In the tip and periphery of a spray. the scattering light is bright and the ratio of fluorescent/scattering intensity is lower. This characteristics indicate the very high number density of small droplets which are well atomized.

Two-Dimensional Distribution of Spray Droplets Emanating from an Injector of Liquid-Propellant Thruster (액체추진제 추력기 인젝터 분무액적의 2차원 공간분포)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong;Jang, Ki-Won;Su, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.135-138
    • /
    • 2007
  • Two-dimensional distribution characteristics on the spray droplets emanating from an injector employed in a liquid-propellant thruster are investigated through dual-mode phase Doppler anemometry (DPDA). Spray-breakup characteristic parameters such as spray droplet velocity, turbulent intensity, Sauter mean diameter (SMD), number density, and volumetric flux are quantified to scrutinize the macroscopic behavior of injector-spray breakup. The present study will be able to contribute to the comprehension for performance features of the thruster in current use and to the design engineering of a brand-new thruster as well.

  • PDF

Numerical Modeling of Droplet/Wall Impingement Process (연료분무의 벽면충돌과정 해석에 대한 수치모델링)

  • Moon, Y.W.;Yu, Y.W.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.10-18
    • /
    • 1999
  • The droplet/wall impingement processes in the diesel-like environment are numerically modeled. In order to evaluate the predictive capability of the droplet/wall impingement model developed in this study, computations are carried out for two ambient temperature conditions. Numerical results indicate that the present droplet/wall impingement model reasonably well predicts the basic features of the impinging spray dynamics.

  • PDF