• Title/Summary/Keyword: 액적 거동

Search Result 123, Processing Time 0.023 seconds

Numerical Study of Droplet Motion in a Microchannel with defferent contact angles (접촉각에 따른 마이크로채널 내에서의 액적 거동에 대한 수치적 연구)

  • Choi, Ji-Young;Son, Gi-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.656-657
    • /
    • 2008
  • The droplet dynamics in a hydrophilic/hydrophobic microchannel, which is applicable to a typical proton exchange membrane fuel cell (PEMFC), is studied numerically by solving the equations governing conservation of mass and momentum. The liquid-gas interface or droplet shape is determined by a level set method which is modified to treat contact angles. The matching conditions at the interface are accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The effects of contact angle, inlet flow velocity, droplet size and side wall on the droplet motion are investigated parametrically. Based on the numerical results, the droplet dynamics including the sliding and detachment of droplets is found to depend significantly on the contact angle. Also, a droplet removal process is demonstrated on the combination of hydrophilic and hydrophobic surfaces.

  • PDF

Numerical Study of Droplet Dynamics in a PEMFC Air Flow Channel (고분자전해질형 연료전지의 공기 채널 내에서의 액적 거동에 대한 수치적 연구)

  • Choi, Ji-Young;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2390-2395
    • /
    • 2008
  • The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.

  • PDF

Controlling Factors of Open-Loop Combustion Response to Acoustic Pressures in Liquid Propellant Rocket Engine (강한 압력파동에 구속된 액체 추진제 연소응답의 지배인자)

  • Yoon Woongsup;Lee Gilyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.267-273
    • /
    • 2004
  • This paper targets to define controlling factors of pressure-coupled combustion response and estimate their effects on droplet evaporation process. Dynamic characteristics of hydrocarbon propellant vaporization perturbed by acoustic pressure are numerically simulated and analyzed. 1-D droplet model including phase equilibrium between two phases is applied and acoustic wave is expressed by harmonic function. Effects of various design factors and acoustic pressure on combustion response are investigated with parametric studies. Results show that driving frequency of acoustic perturbation and ambient pressure have important roles in determining magnitude and phase of combustion response. On the other hand, other parameters such as gas temperature, initial droplet size and temperature, and amplitude of acoustic wave cause only minor changes to magnitude of combustion response. Resultant changes in phase of heat of vaporization and thermal wave in droplet highly influence magnitude and phase of combustion response.

  • PDF

Preliminary Investigation on Spread-Rebound Regime of an Electrically Charged Droplet (전기적으로 대전된 액적의 스프레드-리바운드 거동 영역에 대한 기초 연구)

  • Ryu, Sung-Uk;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2067-2072
    • /
    • 2007
  • Understanding of the impinging behavior of an electrically charged spray is essential in determining appropriate operating conditions for electro-spraying of paints, surface coating materials and insecticides. In the present work, as an initial step, the wall impact of an electrically charged droplet has been experimentally investigated. The charged drops were directed on the surface of a paraffin wax, and the impinging behavior was visualized and recorded using a CCD camera to identify the impingement regime. The spread-rebound boundary for the charged drop turned out to be smaller compared to that for an electrically neutral droplet under the same surface condition. The shift of the transition criterion is considered to be due to the discrepancy between the maximum spread ratio of the electrically charged droplet and that of the neutral droplet.

  • PDF

Behavior of Impinging Droplet on a Solid Surface for the Variation of Fuel Temperature (연료 온도 변화에 따른 평판 충돌 액적의 거동에 관한 연구)

  • Lee, Dong-Jo;Kim, Ho-Yong;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.167-173
    • /
    • 2003
  • An experimental study on the behavior of droplets impinging on a solid flat surface was carried out in the present study. Breakup of a liquid droplet impinging on a solid surface has been investigated experimentally for various fuels with different properties. The fuel temperature and incident angle were chosen as major parameters. And fuel temperature and incident angle varied in the range from $-20^{\circ}C$ to $30^{\circ}C$ and from $30^{\circ}$ to $60^{\circ}$, respectively, were investigated. It was found that the variation of fuel temperature influences upon droplet mean diameter which were bounced out from the solid surface. As the increases of incident angle, the break-out mass flow rate increases. This causes the decrease of liquid film flow rate. The larger incident angle gives less liquid film flow rate.

  • PDF

A Study on the Behavior of an Impacting Droplet on a Wall Having Obstacles (방해물이 존재하는 평판 위 충돌 액적 거동에 관한 연구)

  • Yang, W.J.;Kang, B. S.
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper an experimental study is presented to investigate the effect of a step edge and a stationary droplet on the dynamic behavior of impacting droplet on a wall. The main parameters are the distance from the edge and the center-to-center distance between two droplets. Photographic images are presented to show coalescence dynamics, shape evolution and contact line movement. The emphasis is on presenting the spreading length of droplet for the step edge and two coalescing droplets along their original centers. It is clarified that the droplet exhibits much different dynamic behavior depending on the location of the step edge. The momentum of impacting droplet was better transferred to the stationary droplet as the center- to-center distance between two droplets was reduced, which results in more spreading of coalescing droplet.

Numerical Study of Impact of Microdroplet Containing Nanoparticles (나노입자를 포함한 미세액적의 충돌에 대한 수치적 연구)

  • Roh, Sang-Eun;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.609-617
    • /
    • 2012
  • The impact, spreading and recoil processes of a nanoparticle-laden droplet impacting on a horizontal solid surface are numerically investigated by solving the conservation equations for mass, momentum, energy and mass fraction. The liquid-air interface is tracked using a level-set method that is modified to include the effect of contact angle hysteresis at the wall. The species transport equation including a thermal diffusion term is additionaly solved to determine the nanoparticle distribution in the droplet. The effect of nanoparticle concentration and contact angle are also studied.

Two-Dimensional Distribution of Spray Droplets Emanating from an Injector of Liquid-Propellant Thruster (액체추진제 추력기 인젝터 분무액적의 2차원 공간분포)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong;Jang, Ki-Won;Su, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.135-138
    • /
    • 2007
  • Two-dimensional distribution characteristics on the spray droplets emanating from an injector employed in a liquid-propellant thruster are investigated through dual-mode phase Doppler anemometry (DPDA). Spray-breakup characteristic parameters such as spray droplet velocity, turbulent intensity, Sauter mean diameter (SMD), number density, and volumetric flux are quantified to scrutinize the macroscopic behavior of injector-spray breakup. The present study will be able to contribute to the comprehension for performance features of the thruster in current use and to the design engineering of a brand-new thruster as well.

  • PDF

Study of Behavior Characteristics of Emulsified Fuels with Evaporative Field (증발장에서 에멀젼연료의 거동특성에 관한 연구)

  • Yeom, Jeong Kuk;Yoon, Jeong Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.237-243
    • /
    • 2015
  • In this study, the effects of the mixing ratio of emulsified fuel on the droplet evaporation and spray behavior characteristics were analyzed. A surfactant comprising span 80 and tween 80 mixed at a 9:1 ratio was used for the emulsified fuel. The fuel and surfactant were mixed at a ratio of 3:1 for the emulsified fuel. In addition, considering the mixing ratio of the surfactant, the mixing ratio of $H_2O_2$ in the emulsified fuel was set as EF (emulsified fuel)0, EF2, EF12, EF22, EF32, and EF42. To observe the evaporation characteristics, droplets of the emulsified fuel were dropped on a heating plate and observed using scattered light and a Schlieren system. In addition, to analyze the effect of the $H_2O_2$ mixing ratio, the behavior characteristics of the evaporative free spray were investigated in the mixing ratio range of EF0 to EF22 using a constant volume chamber with heaters. Consequentially, it was found that in the case of EF22, the free spray development of the emulsified fuel was faster than that of EF0 (diesel only) because of the promotion of the evaporation due to the phase change in the peroxide contained in the emulsion fuel.

Unsteady Pressure Oscillations of Liquefied Paraffin Wax Combustion in Hybrid Rocket (파라핀-왁스를 사용하는 하이브리드 로켓 연소의 비정상 압력 진동)

  • Hyun, Wonjeong;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.339-347
    • /
    • 2022
  • The post chamber in hybrid rocket is installed to induce additional increase in combustion enthalpy by allowing continuous burning of the liquefied fuels. When paraffin wax fuel is used, unsteady pressure oscillations are observed only at the beginning of combustion. This study intends to investigate the effect of additional combustion of liquefied fuel droplets on the occurrence of unsteady pressure fluctuations. For this, the combustion in post-chamber was visualized and image analysis using POD(Proper Orthogonal Decomposition) technique was performed. In addition, the hypothesis was proposed on the occurrence of unsteady pressure oscillations by identifying the modes including the behavior of droplets through mode reconstruction. Conducting a series of combustion tests, the amount of liquefied fuel flowing into the post chamber and the generation of fuel droplets were controlled. Also, the changes in frequency characteristic of unsteady pressure oscillation were monitored. As a result, the unsteady pressure oscillations observed in paraffin wax combustion were the result of additional combustion of fuel droplets generated in the post chamber.