• Title/Summary/Keyword: 앞전 흡입법

Search Result 2, Processing Time 0.015 seconds

A Study on the Total Drag Estimation for the Aircraft Conceptual Design (항공기 개념설계를 위한 전체항력 예측에 관한 연구)

  • 김상진;전권수;이재우
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.70-82
    • /
    • 1999
  • During the aircraft conceptual design stage, rapid aerodynamic analyses over various configurations are required. Hence, empirical and analytical methods play important roles in predicting the aero-dynamic characteristics. In this study, total drag estimation method based on empirical and analytical approaches is developed. By comparing with the results of the wind tunnel experiment and existing prediction methods, it is demonstrated that the developed method is accurate and useful in predicting total drag for the whole Mach number range.

  • PDF

Three-dimensional Flow and Aerodynamic Loss Downstream of First-Stage Turbine Vane Cascade (터빈 제1단 정익 익렬 하류에서의 3차원 유동 및 압력손실)

  • Jeong, Jae Sung;Bong, Seon Woo;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.521-529
    • /
    • 2017
  • Three-dimensional flow characteristics within a high-acceleration first-stage turbine vane passage has been investigated in a newly-built vane cascade for propulsion. The result shows that there is a strong favorable pressure gradient on the vane pressure surface. On its suction surface, however, there exists not only a much stronger favorable pressure gradient than that on the pressure surface upstream of the mid-chord but also a subsequent adverse pressure gradient downstream of it. By employing two different oil-film methods with upstream coating and full-coverage coating, a four-vortex model horseshoe vortex system can be identified ahead of each leading edge in the cascade, and the separation line of inlet boundary layer flow as well as the separation line of re-attached flow is provided as well. In addition, basic flow data such as secondary flow, aerodynamic loss, and flow turning angle downstream of the cascade are obtained.