• Title/Summary/Keyword: 압축 천연가스

Search Result 172, Processing Time 0.025 seconds

A Study on Performance and Characteristic of Exhaust emission in CNG Dedicated Engine (천연가스 전소기관의 성능 및 배출가스 특성에 관한 연구)

  • 한영출;김경배;오용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.12-17
    • /
    • 2000
  • In this study a heavy duty diesel engine was modified into a 11-liter 6-cylinder SPI CNG dedicated engine, which was tested to investigate the performance and exhaust emission under the maximum load condition as the engine speed was increased in the range of 1,000∼2,200 rpm. The exhaust emission was also measured at D-13 mode as well as AVL-8 mode.

  • PDF

Utilization technique of methanol for automobile fuel (자동차 연료로서의 메탄올 이용기술)

  • 김문헌
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.18-28
    • /
    • 1996
  • 메탄올이 자동차 연료로서 유망시 되고 있는 이유는 공급면과 이용면의 두 측면에서 장점을 가지고 있기 때문일 것이다. 공급면에 있어서는 원료가 천연가스나 석탄등 자원이 풍부하다는 점이 다른 연료에 비해 유리하며 특히 천연가스로 부터의 화학용 메탄올 제조기술이 거의 확립되어 있다는 점이다. 이용면에 있어서는 상온에서 운송, 저장 및 유량 제어 측면에서 취급이 비교적 용이하며 메탄올 연료의 특성상 옥탄가가 높고 희박연소한계가 넓어 고압축비 희박연소기관을 실현할 수 있으며, NOx나 매연 발생이 적은 저공해 연료인 점이 장점이다. 본 고에서는 본인의 실험실에서 이루어진 메탄올 연료에 대한 몇가지 실험결과들을 토대로 하여 메탄올 기관에 있어서의 일반적인 특성 및 문제점들에 대하여 소개하고자 한다.

  • PDF

Benefit Analysis of CNG as an Automobile Fuel (자동차연료로서 CNG의 경제성 분석)

  • Cho, Haeng-Muk;Mahmud, Md. Iqbal
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The adoption of compressed natural gas (CNG) as a vehicle fuel is a common phenomenon as it is accelerating worldwide. Increasing number of CNG driven vehicles around the world has jumped up from one million in 1996 to five million in 2006. CNG as a vehicle fuel is very popular to the end users because of its clean-burning properties and cost effective solution compared to other alternative fuels like diesel and gasoline. The use of CNG as a fuel reduces vehicular emission that is consisted of carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen ($NO_x$), carbon dioxide ($CO_2$) etc. This research highlights the characteristics of CNG vehicles, CNG arrangement in the vehicles, CNG fueling procedures and most importantly the environmental and economic factors that are highly considered as cost effective solution for the flexibility of using CNG in the automobiles.

Influences of fuel additives on the low temperature reaction of DME HCCI engine (DME 예혼합압축착화 기관의 저온산화반응에 미치는 첨가연료의 영향)

  • Jung, Suk Ho;Ishida, Masahiro
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.19-23
    • /
    • 2012
  • DME HCCI기관의 단점은 디젤 엔진에 비해 기관부하 영역이 굉장히 좁다는 것이고 이는 저온산화반응이 너무 빨리 일어나서 노크를 발생시키기 때문이다. 저온산화반응을 억제하기 위해서 DME 연소에 미치는 천연가스의 영향을 실험한 결과, 천연가스가 DME의 저온산화반응을 억제시키기 때문에 기관부하영역이 확대된다는 것을 알았다. 본 연구에서는 서로 다른 세탄가를 가진 첨가연료가 DME 저온산화반응에 미치는 영향을 실험적으로 조사하였다. 그 결과 저온산화반응의 최고 열발생율은 세탄가에 의존하지 않지만 착화온도는 세탄가에 의존한다는 사실을 밝혔다.

Study on Adiabatic Performance of LNG Storage Tank for Vehicles (차량용 LNG연료용기의 단열성능에 관한 연구)

  • Han, Jeong-Ok;Lee, Young-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • Natural gas vehicles are being applied to city buses for improving air quality in metropolitan and have proved the effective way to reduce the pollutant emissions. Liquified Natural Gas(LNG) has also attempted a vehicle fuel in order to raise the fuel storage density that is a disadvantage of Compressed Natural Gas(CNG). This paper described insulation characteristic of a LNG storage tank. From the results, adiabatic coefficient of a tested tank was around $40J/h{\cdot}^{\circ}C{\cdot}m^2$ and it was the lower level than gas safety regulation limit. Two experimental methods were adopted to justify the evaluation results and they were revealed that the results were very similar to each other. Also, through testing relief valve operation characteristic it was investigated venting amount of boiled off gas.

  • PDF

A Conceptual Design and Structural Efficiency Evaluation of 20ft Container Shape CNG Tank (20피트 콘테이너형 압축천연가스탱크의 개념설계 및 구조효율성 평가)

  • Kim, Young-Hun;Kim, Jung-Yeob;Lee, Jae-Wook;Song, Jae-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.142-150
    • /
    • 2005
  • Recently, the gas transportation system for CNG(Compressed Natural Gas) has been developed and several innovative approaches are presented from the aspects of commercial demand. In this study, a new type of 20ft container shape CNG tank with two and four cylinder intersections by using the intersecting spheres has been proposed. And the structural analysis of CNG tank with Mildsteel, API High Tensile Steel, Al-alloy and FRP has been carried out to compare the different types of pressure vessels of materials used. The analysis result shows that the proposed intersectional cylindrical type of CNG tank can be applied to the gas transportation system. And further study on the commercial analysis and associated equipments should be carried out for the practical applications.

A Comparative Study Between One- and Two-Stage Refrigeration System for the Natural Gas Cooling Process (천연가스 냉각을 위한 1단 냉동과 2단 냉동 사이의 비교연구)

  • Cho, Jung-Ho;Kim, Dong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.3106-3111
    • /
    • 2010
  • In this study, a comparative study was performed between one- and two-stage refrigeration system to cool the natural gas temperature down to $-40^{\circ}C$ using propane as a chilling medium. As a thermodynamic model, Peng-Robinson equation of state equation was applied and PRO/II with PROVISION release 8.3 at Invensys company was utilized for the simulation of the refrigeration system. Through this study, optimization work showed that two-stage refrigeration system was proven to save about 33.5% refrigeration power consumption compared to the one-stage refrigeration cycle.

The Limit Compression Ratio of Knock Occurring by $R_{dH2}$ in the Heavy Duty Hydrogen-CNG Fueled Engine (대형 수소-천연가스 기관의 수소첨가율에 따른 노크발생 한계압축비)

  • Kim, Yong-Tae;Lee, Jong-Tai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.84-91
    • /
    • 2006
  • A heavy duty hydrogen-natural gas fueled engine can obtain stable operation at ultra lean conditions and reduce emissions extremely. Reduction of $CO_2$ in its engine is one of the most benefit. In this study, rate of hydrogen addition($R_{dH2}$) and compression ratio($\varepsilon$) were investigated including performance of this engine. As results, it was found that phenomenon of pressure oscillation when increasing $R_{dH2}$ and $\varepsilon$, it means occurring knock. It consider that pressure oscillation was increased due to fast burning speed of hydrogen. Even if same compression ratio, pressure oscillation was remarkable increased according to increasing $R_{dH2}$. Therefore, limit compression ratio of knock occurring was reduced by increasing $R_{dH2}$.

A Trends Analysis on Safety for CNG/HCNG Complex Fueling Station (CNG/HCNG 복합충전소의 안전에 관한 동향분석)

  • Lee, Seung-Hyun;Kang, Seung-Kyu;Sung, Jong-Gyu;Lee, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • In this research, the safety trends and technologies of HCNG, a mixture of hydrogen and natural gas, are analyzed. This is an attracting alternative fuels to meet the strengthened automotive exhaust gas emission standards. HCNG is very important opportunities and challenges in that it is available the existing CNG infrastructures, meets the strengthened emission standards, and the technical, social bridge of the coming era of hydrogen. It is essential for the commercialization of HCNG that hydrogen - compressed natural gas blended fuel for use in preparation of various safety considerations included accidents scenario, safety distance, hydrogen attack, ignition sources and fire detectors are examined. Risk assessments also are suggested as one of permission procedure for HCNG filling station.

Adsorption and Storage of Natural Gas by Nanoporous Adsorbents (나노세공체 흡착제에 의한 천연가스의 흡착 및 저장)

  • Jhung, Sung Hwa;Chang, Jong-San
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.117-125
    • /
    • 2009
  • In order to utilize natural gas (NG), one of the clean energy sources in next-generation, as a fuel for vehicles, it is important to store natural gas with high density. To store NG by adsorption (ANG) at room temperature and at relatively low pressure(35~40 atm) is safe and economical compared with compressed NG and liquefied NG. However, so far no adsorbent is reported to have adsorption capacity suitable for commercial applications. Nanoporous materials including metal-organic frameworks can be potential adsorbents for ANG. In this review, physicochemical properties of adsorbents necessary for high adsorption capacity are summarized. Wide surface area, large micropore volume, suitable pore size and high density are necessary for high energy density. Moreover, low adsorption-desorption energy, rapid adsorption-desorption kinetics and high delivery are needed. Recently, various efforts have been reported to utilize nanoporous materials in ANG, and it is expected to develop a nanoporous material suitable for ANG.