• Title/Summary/Keyword: 압축 냉각공기

Search Result 71, Processing Time 0.024 seconds

Performance Evaluation of Compressed Cold Air System for Environmentally Conscious Machining (환경친화적 가공을 위한 냉풍시스템의 성능평가)

  • 강명창;김정석;이득우;이승상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1008-1011
    • /
    • 2002
  • In industrially advanced countries, environmentally conscious machining was eagerly studied because of ecological and economical reasons. As the environmental regulations become stricter, new machining technologies which takes environmental aspects into consideration are being developed. Industry and research institutions established applications for dry, semi-dry, oil-mist and compressed cold air machining. This paper investigates the performance of new compressed cold air system for environmentally conscious machining and evaluates machinability of dry and new compressed cold air machining. A series of tests are carried out using measuring equipments under dry and compressed cold air machining.

  • PDF

Environmentally Conscious Machining Technology by using High Speed Machine Tool (고속가공기를 이용한 환경친화적 가공기술)

  • Bae, J.C.;Kang, M.C.;Kim, J.S.;Lee, D.W.;Kang, I.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.956-961
    • /
    • 2003
  • Recently, environmental pollution has become a significant problem in industry and many researches have been investigated in order to preserve the environment. Environmentally conscious machining and technology have more and more important position in machining process. In the milling process, the cutting fluid has greatly bad influence on the environment. In this study, the machining of blade parts(12Cr steel) using the cutting fluid, compressed cold air and oil mist etc., also, the productivity and the surface topography was improved by using new end-mil tool considering tool material and shape.

  • PDF

The study on improving tool life using compressed chilly air (압축냉각공기를 이용한 공구수명 향상에 관한 연구)

  • 김찬우;이채문;이득우;김정석;정우섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.510-515
    • /
    • 2003
  • High-speed machining generates concentrated Thermal/fractional damage at the cutting edge and rapidly decreases the tool life. This paper is aimed at improving the tool life using compressed chilly air. In this paper, the experiments were carried out in various cutting environments, such as dry, wet and compressed chilly air. Tool life were measured to evaluate machinability in high-speed milling of various materials. With respect to the cutting environment, compressed chilly air increased tool life. However, the wet condition decreased tool life due to the thermal shock caused by excessive cooling.

  • PDF

A study on machining of aircraft parts using compressed chilly air system (압축냉각공기 시스템을 적용한 항공기 부품 가공 기술)

  • 이채문;이득우;김석원;정우섭;김상기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.315-320
    • /
    • 2004
  • Cutting fluid usually has been used in order to improve machinability, tool life, surface quality. However, problems such as pollution, costs of chip and fluid treatment caused. In this paper, compressed chilly air was used to machine aircraft parts and investigate possibility and advantage of that. The experiments were carried out in various cutting environments, such as wet and compressed chilly air. With respect to the cutting environment, compressed chilly air gave advantages such as decrease of pollution and easy chip treatment.

  • PDF

A Study on the Microscopic Precision of Machined Surface according to Variation of Machining Environments in High Speed Endmilling (고속 엔드밀가공에서 가공환경 변화에 따른 가공면의 미시적 정밀도에 관한 연구)

  • Kwon, Dong-Hee;Lee, Jong-Hwan;Hwang, In-Ok;Kang, Myung-Chang;Kim, Jeong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.50-57
    • /
    • 2006
  • The investigation of microscopic precision in high speed endmilling is necessary for machinability evaluation, and the environmentally conscious machining technology have more important position in recent machining process. The microscopic precision of workpiece is influenced by machining environments variation as cutting fluid type and lubricant method. In this study, the cutting forces according to variation of cooling and lubrication are investigated by specially designed tool dynamometer. And the surface roughness, micro hardness and residual stress are evaluated according to machining environment. The characteristics of damaged layer in environmentally conscious machining and conventional machining using cutting fluid are compared experimentally.

Performance Evaluation of Environmentally Conscious Machining System Using Low Temperature Air System (저온 냉풍시스템을 이용한 환경친화적 가공시스템의 성능평가)

  • 배정철;김경중;김경중;강명창;김정석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.127-132
    • /
    • 2004
  • In industrially advanced countries, environmentally conscious machining was eagerly studied because of ecological and economical reasons. As the environmental regulations become stricter, the new machining technologies which take environmental aspects into consideration are being developed. Recently the research institutions have established application method for dry, semi-dry, oil-mist and compressed cold air machining. In this paper the performance of new compressed cold air system for environmentally conscious machining is investigated and machinability of dry and new compressed cold air machining is evaluated. A series of tests are carried out by using measuring equipments in condition of dry and compressed cold air machining.

A Study on Fluid Flow and Heat Transfer of a Corrugated Structure for Crossflow Reduction of Impingement Jet (충돌제트에서의 횡방향 유동 감소를 위한 파형 구조의 유동 및 열전달에 관한 연구)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.329-339
    • /
    • 2017
  • Impingement jets have been applied in a wide variety of fields as they provide significantly high heat transfer on the impingement-jet stagnation zone. However, the crossflow in an impingement chamber developed by spent wall jets can disrupt and deflect the downstream jets in the array, leading to a decrease in the cooling performance of an array of impingement jets. A numerical analysis is made of the fluid flow and heat transfer characteristics in a corrugated structure that traps the spent air in the corrugations between impingement jets and reduces crossflow effects on downstream jets. All computations are performed by considering a three-dimensional, steady, and incompressible flow by using the ANSYS-CFX 15.0 code. The effects of the configuration parameters of the corrugated structure on crossflow reduction of the array of impingement jets are presented and discussed.

Flow and Thermal Analyses of Internet Data Center for Embodiment in Green IT (공공부문 전력절감과 그린IT구현을 위한 데이터센터 내 열유동해석)

  • Park, Sang-Lin;Shim, Jang-Sup;Song, Jong-Choul;Moon, Byong-Joo;Park, Kyoung-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.243-246
    • /
    • 2010
  • 최근 정보량의 급격한 증가로 데이터센터는 점차 대형화되고 있으며, 통합적으로 관리/운영되기 위해서는 전산실내 적절한 온도와 습도의 유지가 필수적이므로, 전산실내 에너지의 사용 효율을 극대화하기 위한 연구가 꾸준히 이루어지고 있다. 이 연구에서는 국내 공공부문의 대형 전산실을 모델로 선정하여 전산실 내 서버의 위치, 용량 그리고 냉각시스템 등을 고려하여 전산실내 열/유동특성을 수치적으로 규명함으로써, 에너지 효율 극대화를 추구하고 전력을 절감하여 저탄소 녹색성장과 그린IT 환경을 구축 하고자 한다. 이를 위하여 실제 측정한 환경 데이터를 바탕으로 전산유체역학(CFD)을 이용하여 3차원 비압축성, 정상상태의 열/유동특성을 예측한다. 또한 기존 및 개선된 전산실에 대한 비교결과를 바탕으로 새로운 열/유동조건을 도출하며, 이를 통하여 전산실 운영에 필요한 에너지 효율향상 방안을 제안하고자 한다. 연구 결과, 전산실 천장의 냉기유입부분과 열기배출부분으로 나뉘어 냉복도와 온복도를 형성하며, 내부 서버와 기타 각종 장비들의 발열 등으로 부분적인 열섬(Thermal island)현상이 나타났다. 이러한 열섬현상을 줄이고, 전산실내 환경을 최적화하기 위하여 찬공기 유입부분의 속도, 배출구의 유량, 그리고 냉/온 복도의 역할 변경 등 여러 가지 가능한 매개변수에 대한 연구가 필수적이다. 또한, 서버에서 발생한 고온의 공기를 배출하는 것이 전산실 내 적절한 온도구현에 효과적이며, 열섬현상을 방지하기 위해서는 이 부분에 차가운 공기의 유입이 필요하다는 것을 알 수 있었다.

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.

An Experimental Study on the Performance of Heat Pump Assisted Batch Dryer Using HFC134a (HFC134a를 사용한 열펌프 건조기의 성능에 관한 실험적 연구)

  • Kim, Y.J.;Yim, C.S.
    • Solar Energy
    • /
    • v.17 no.2
    • /
    • pp.3-11
    • /
    • 1997
  • In conventional heat and vent dryer, both sensible and latent heat could not be recovered from the exhaust air, but this problem could be solved by introducing a heat pump to a conventional dryer, having a connection with cooling, dehumidifying and heating of heat pump. In this work, HFC134a as a substitute refrigerant of CFC12 adopted in heat pump and a batch type is also introduced. The variables affected on the system performance are holding temperature of a drying chamber, bypass air ratio, degree of superheat and refrigerant flowrate, etc. The moisture contents were decreased curvilinearly in the range of $86{\sim}75%$ on the wet basis. Under the constant drying temperature, the face velocity plays an important role to the drying performance. The COPs are increased in accordance with the air velocity, on the other hand the SMERs are gradually decreased.

  • PDF