• 제목/요약/키워드: 압축천연가스

검색결과 172건 처리시간 0.022초

바이모달 트램의 추진장치 성능 모의 (A Simulation Study of the Performance of a Propulsion Equipment for Bimodal Tram)

  • 배창한;목재균;장세기;이강원
    • 한국철도학회논문집
    • /
    • 제12권1호
    • /
    • pp.122-128
    • /
    • 2009
  • 바이모달 수송시스템 연구단에서 개발중인 트램은 자동운전이 가능하고 일반도로와 전용구간을 주행할 수 있는 고무차륜방식의 저상굴절 바이모달 트램으로서, 압축천연가스 엔진과 리튬폴리머 배터리를 사용하는 직렬형 하이 브리드 추진계로 구동된다. 본 논문에서는 바이모달 트램의 직렬형 하이브리드 추진장치의 요구사양을 제시하고 하이브리드 추진제어방식에 관해 설명한다. 하이브리드 차량 시뮬레이션 툴인 ADVISOR를 사용하여 기준 주행사이클과 일본의 10-15 mode에 대한 바이모달 트램의 주행을 모의하고, CNG 하이브리드 추진계에 대한 성능을 분석한다.

CNG 및 CO2 겸용 수송을 위한 압력용기 개념 설계에 대한 연구 (Study on Conceptual Design of Pressure Vessel to Transport CNG and CO2)

  • 김영훈
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.51-58
    • /
    • 2013
  • Recently, there has been an increase in the demand for natural gas as a source of clean energy, which has increased the demand for LNG carriers. However, LNG carriers require a capital investment to obtain equipment for the regasification process, which prevents fires and explosions. Thus, on account of NIMBY, a CNG carrier is suggested that eliminates the need for regasification equipment. Meanwhile, carbon dioxide emissions are more and more regulated by international conventions such as the Kyoto Protocol. Because of this, $CO_2$ carriers have also received international attention as a methodology to transport and store $CO_2$ cargoes. Several vessels or tanks to transport and store $CO_2$ gas have been studied in various countries. This paper proposes a conceptual design for a 20ft container shaped tank to effectively transport small cargoes of $CO_2$ and CNG. The proposed pressure vessel or tank will be carried by a conventional containership or special cargo ship. The influences of the design parameters for proposed pressure vessel or tank. Including the materials, scantlings, and shape of the pressure vessel, are studied theoretically and computationally.

현무암 섬유를이용한 CNG 복합재 압력용기의 최적설계 (Optimal Design for CNG Composite Pressure Vessel Using Basalt Fiber)

  • 장효성;배준호;김철
    • 한국정밀공학회지
    • /
    • 제32권3호
    • /
    • pp.269-277
    • /
    • 2015
  • Compressed natural gas (CNG) composite vessels for vehicles have been generally made of 34CrMo4 for a inner liner part and E-glass/epoxy for a composite layer part. But, there is a problem of material loss of CNG composite vessels used in vehicles due to the design of excessive thickness of the liner. And, light weight of the CNG composite vessel is required for improving fuel efficiency. In this study, optimal design for CNG composite pressure vessel was performed by using basalt fiber, which is the environment-friendly material having a good mechanical strength. The optimal thickness of each part (inner liner and composite layer) was determined by theoretical analysis and FEA for satisfying structural safety and lightweight of the vessel. Also, for improving fatigue life, optimal autofrettage pressure was derived from FEA results.

산화촉매를 장착한 대형 CNG 엔진의 나노입자 배출특성 (Nanoparticles Emission Characteristics of Heavy-Duty CNG Engine with Oxidation Catalyst)

  • 김태준;김화남;최병철
    • 동력기계공학회지
    • /
    • 제12권5호
    • /
    • pp.27-33
    • /
    • 2008
  • Natural gas has been considered one of the most promising alternative fuels for transportation because of its abundance as well as its ability to reduce regulated pollutants. We measured emission characteristics of nanoparticles from lean burn H/D(Heavy-Duty) CNG (Compressed Natural Gas) engine equipped with oxidation catalysts. The experiments were carried out to measure the emission and engine performance according to the ESC test cycle. The CO and THC conversion efficiencies on the best catalyst in the ESC test cycle achieved about 91 % and 83 %, respectively. From the measurement by the SMPS, the number of nanoparticles emitted from H/D CNG engine is reduced by about 99 % which is more than that of 2.5 L diesel engine. The particle number concentrations of H/D CNG engine were almost nanoparticles. Nanoparticles smaller than 30 nm emitted from the H/D CNG engine and diesel engine equipped with a CDPF(Catalyzed Diesel Particulate Filter) were quite similar. However, the particles bigger than 30nm from the CNG engine were smaller than the particles from diesel engine equipped with a CDPF. The higher the CNG engine load, the lower the particle number from engine-out, but it increased slightly at full load.

  • PDF

CNG용 Type 4 하이브리드 섬유 복합재 용기 개발에 대한 연구 (A Study on the Development of a Hybrid Fiber Reinforced Composite for a Type 4 CNG Vessel)

  • 조성민;조민식;정근성;이선규;이승국;박기동;류성기
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.97-103
    • /
    • 2017
  • The objective of this study is to develop and commercialize an on-board fuel storage system for CNG vehicles. A type 4 vessel is made of resin-impregnated continuous filament windings on a polyamide (PA6) liner. In particular, this study localized the PA6 liner's fabrication and development. To analyze the filament winding, a specimen test was performed, and the results were verified values obtained using finite element analysis. In this study, the filament winding and fibers were optimized for a 207 bar composite cylinder in a compressed natural gas vehicle.

스파크점화직분식 CNG의 점화성 및 연소화염 특성에 대한 연구 (An Experimental Study on the Ignition Probability and Combustion Flame Characteristics of Spark-Ignited Direct-Injection CNG)

  • 황성일;정성식;염정국;전병열;이진현
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.37-46
    • /
    • 2016
  • For the SI engines, at only full load, the pumping loss has a negligible effect, while at part load conditions, the pumping loss increases. To avoid the pumping loss, the spark-ignited engines are designed to inject gasoline directly into the combustion chamber. In the spark-ignited direct-injection engines, ignition probability is important for successful combustion and the flame propagation characteristics are also different from that of pre-mixed combustion. In this paper, a visualization experiment system is designed to study the ignition probability and combustion flame characteristics of spark-ignited direct-injection CNG fuel. The visualization system is composed of a combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. It is found that ambient pressure, ambient temperature and ambient air flow velocity are important parameters which affect the ignition probability of CNG-air mixture and flame propagation characteristics and the injected CNG fuel can be ignited directly by a spark-plug under proper ambient conditions. For all cases of successful ignition, the flame propagation images were digitally recorded with an intensified CCD camera and the flame propagation characteristics were analyzed.

CNG 대형엔진에서 이중 O2 센서를 활용한 피드백 제어를 통한 삼원촉매 정화효율 향상 (Feedback Control using Dual O2 Sensors for Improving the Conversion Efficiency of a Three-way Catalyst in a Heavy-duty CNG Engine)

  • 윤성준;이준순;박현욱;이용규;김창업;오승묵
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.163-170
    • /
    • 2019
  • In this study, feedback logic using dual O2 sensor values were developed to increase the purification capability of a three-way catalyst (TWC) in a compressed natural gas (CNG) engine. A heavy-duty inline 6-cylinder engine was used and the CNG was supplied to the engine through a mixer. This study consists of two main parts, namely, the proportional integral (PI) control with a front O2 sensor and the feedback control with dual O2 sensors. In the PI control experiment, effects of various parameters, such as P gain, I gain, and lean delay, on the TWC capability were identified. Based on the results of the PI control experiment, the feedback logic using dual O2 sensor values were developed. In both cases, the nitrogen oxides (NOX) emissions were nearly zero. However, the carbon monoxide (CO) emissions were reduced significant in the feedback logic with dual O2 sensors than in the PI control with the front O2 sensor.

디젤엔진에서 경유-CNG 혼합 연소의 성능 및 배기 특성 (Performance and Emission Characteristics of Dual-fuel(Diesel-CNG) Combustion in a Diesel Engine)

  • 유경현;박진철;최규호
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.132-139
    • /
    • 2010
  • This paper describes an investigation of the performance and emission characteristics of a commercial cylinder direct injection diesel engine operating on natural gas with pilot diesel ignition. Engine tests for variations in the pilot injection timing were performed at an engine speed of 1500 rpm. This study showed that the performance of the dual-fuel diesel engine increased as the engine load increased and as the pilot diesel injection timing angle advanced. The peaks of cylinder pressure, pressure rise rate, and heat release rate all increased while the fuel ignition timing advanced with the pilot injection timing. The engine operation was stable, and the least smoke was produced at a pilot injection timing of $12^{\circ}$ before top dead center. NOx emissions were only exhausted under high-load conditions, and they increased as the pilot injection timing angle advanced.

직분식 엔진에서 연료공급 조건에 따른 CNG와 공기의 혼합 및 연소특성 (Mixing and Combustion Characteristics of a CNG and Air according to Fuel Supply Conditions in a DI Engine)

  • 강정호;박종상;염정국;정성식;하종률
    • 한국분무공학회지
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2008
  • It was investigated how fuel injection timing - early injection and later injection - in conjunction with throttle open rate effect the fuel-air mixing characteristics, Engine power, combustion stability and emission characteristics on a DI CNG spark Engine and control system that had been modified and designed according to the author's original idea. It was verified that the combustion characteristics were changed according to fuel injection timings and Engine conditions determined by different throttle open rates and rpm. It was found that the combustion characteristics greatly improved at the complete open throttle rate with an early injection timing and at the part throttle rate with a late injection timing. Combustion duration was governed by flame propagation duration in a late injection timing and by an early flame development duration in an early injection timing. As the result, we discovered that combustion duration is shortened, lean limit is improved, air-fuel mixing conditions controlled, and emissions reduced through control of fuel injection timing according to change of the throttle open rate.

  • PDF

디젤/천연가스 반응성제어 압축착화 엔진에서 피스톤 형상에 따른 연소 특성 (Influence of Piston Bowl Geometry on Combustion of a Diesel/CNG Reactivity Controlled Compression Ignition Engine)

  • 김현수;김우영;배충식
    • 한국분무공학회지
    • /
    • 제26권2호
    • /
    • pp.57-66
    • /
    • 2021
  • The reactivity controlled compression ignition (RCCI) is the technology that provides two different types of fuel to the combustion chamber with the advantage of significantly reducing particulate matter and nitrogen oxides emissions. However, due to the characteristics of lean combustion, combustion efficiency is worsened. The conventional type of pistons for conventional diesel combustion (CDC) has mostly been used in the researches on RCCI. Because the pistons for CDC are optimized to enhance flow and target spray, the pistons are unsuitable for RCCI. In this study, a piston that is suitable for RCCI is designed to improve combustion efficiency. The new piston was designed by considering the factors such as squish geometry, bowl depth, and surface area. The experiment was carried out by fixing the energy supply to 0.9kJ/cycle and 1.5kJ/cycle respectively. The two pistons were quantitatively compared in terms of thermal efficiency and combustion efficiency.