• Title/Summary/Keyword: 압축성(compressible)유동

Search Result 356, Processing Time 0.032 seconds

Computational Investigation of the Effect of UAV Engine Nozzle Configuration on Infrared Signature (무인항공기 노즐 형상 변화에 따른 IR 신호 영향성 연구)

  • Kang, Dong-Woo;Kim, June-Young;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.779-787
    • /
    • 2013
  • The effects of various nozzle configurations on infrared signature are investigated for the purpose of analysing the infrared signature level of aircraft propulsion system. A virtual subsonic aircraft is selected and then a circular convergent nozzle, which meets the mission requirements, is designed. Convergent nozzles of different configurations are designed with different geometric profiles. Using a compressible Navier-Stokes-Fourier CFD code, an analysis of thermal flow field and nozzle surface temperature distribution is conducted. From the information of plume flow field and nozzle surface temperature distribution, IR signature of plume and nozzle surface is calculated through the narrow-band model and the RadThermIR code. Finally, qualitative information for IR signature reduction is obtained through the analysis of the effects of various nozzle configurations on IR signature.

Real Gas Speeds of Sound and Approximate Riemann Solver (실제 기체 음속과 근사 리만 해법)

  • Moon, Seong-Young;Han, Sang-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • The definition of the speed of sound is reexamined since it is crucial in the numerical analysis of compressible real gas flows. The thermodynamic speed of sound (TSS), $a_{th}$, and the characteristic speed of sound (CSS), $a_{ch}$, are derived using generalized equation of state (EOS). It is found that the real gas EOS, for which pressure is not linearly dependent on density and temperature, results in slightly different TSS and CSS. in this formalism, Roe's approximate Riemann solver was derived again with corrections for real gases. The results show a little difference when the speeds of sound are applied to the Roe's scheme and Advection Upstream Splitting Method (AUSM) scheme, but a numerical instability is observed for a special case using AUSM scheme. It is considered reasonable to use of CSS for the mathematical consistency of the numerical schemes. The approach is applicable to multi-dimensional problems consistently.

Hybrid Dimensional Approach to the Unsteady Compressible Flowfield Analysis around a High-speed Train Passing through a Tunnel (혼합차원기법을 이용한 고속열차의 터널 통과 시 발생하는 비정상 압축성 유동장의 수치해석)

  • Kim, Tae-Yoon;Kwon, Hyeok-Bin;Lee, Dong-Ho;Kim, Moon-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.78-83
    • /
    • 2002
  • A modified patched grid scheme has been developed and employed for and axi-symmetric unsteady Euler solver based on Roe's FDS to analyze the unsteady flow fields induced by a train and a tunnel. On this paper, the innovative zonal method, named hybrid dimensional approach, was proposed and applied to the train-tunnel interaction problems. The basic idea of this method is to maximize the efficiency of numerical calculations by minimal assumption of spatial dimensions. The hybrid dimensional approach, embedded in the present modified patched grid method, yielded high numerical accuracy as much as the fully axe-symmetric method. The hybrid dimensional approach is expected to reduce the huge computation time of the train-tunnel interaction problems especially in the cases of solving a long tunnel.

A Study on the Impulse Waves Discharged from the Exit of the Convergent/Divergent Pipes (축소/확대관 출구로부터 방출되는 펄스파에 관한 연구)

  • Lee, D.H.;Ju, K.M.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.640-645
    • /
    • 2001
  • The present study is to investigate the characteristics of the impulse waves discharged from the exit of the convergent and divergent pipes. An experiment is carried out using a shock tube with an open end and is compared to the computation of the axisymmetric, compressible, unsteady Euler equations, which are solved by the second-order total variation diminishing(TVD) scheme. For the computational work, some initial compression waves are assumed inside the pipe so that those are identical to the experimental ones of the shock tube. The results show that the peak pressures of the impulse waves discharged from the exit of convergent and divergent pipes decrease with an increase in the wavelength of the initial compression wave. All of the impulse waves have a strong directivity toward the pipe axis, regardless of the exit type of the pipe employed. The impulse waves discharged from the divergent pipe are stronger than those from the straight pipe, while the impulse waves of the convergent pipe are weaker than those from the straight pipe. It is believed that the convergent pipe can playa role of a passive control to reduce the peak pressure of the impulse wave. The present computations represent the experimented impulse waves with a good accuracy.

  • PDF

A Study of Supersonic Twin Jet Impinging on a Plate (평판에 충돌하는 초음속 Twin 제트에 관한 연구)

  • Park, Soon-Yoong;Yoon, Sang-Ho;Baek, Seung-Cheol;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.508-513
    • /
    • 2003
  • Experiments are performed to investigate the detailed structure of underexpanded twin jet impinging on a perpendicular flat plate. The major parameters, such as nozzle operating pressure and nozzle spacing, are varied to create different jet flow fields resulted from the complicated interactions of the twin jets. From the surface pressure measurements and shadowgraphs taken by schlieren optical system, the jet structure is strongly dependent on the nozzle operation pressure and the spacing. The results obtained show that the closer nozzle spacing may induce to decrease the diameter of the Mach disk within the first shock cell in the underexpanded twin jet. With the increasing nozzle operating pressure and decreasing the nozzle spacing, a new shock wave appears at the entrainment region between the two jets, due to the enhancement of mixing effect of the both jets. The closer nozzle spacing makes the overall impinging pressure level higher, while severe pressure oscillation along the axis of symmetry. Furthermore it is recommended the wider spacing to obtain higher thrust under the present experimental conditions.

  • PDF

The Hybrid Rocket Internal Ballistics with Two-phase Fluid Modeling for Self-pressurizing $N_2O$ II (자발가압 성질을 가진 아산화질소의 2상유체 모델링을 통한 하이브리드 로켓 내탄도 해석 II)

  • Rhee, Sun-Jae;Lee, Jung-Pyo;Kim, Hak-Chul;Moon, Keun-Hwan;Choi, Won-Jun;Jung, Sik-Hang;Sung, Hong-Gye;Moon, Hee-Jang;Kim, Jin-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.50-54
    • /
    • 2011
  • This paper presents a two-phase model for hybrid rocket internal ballistics design using $N_2O$ as oxidizer The two-phase model results are compared with data obtained from static firing test. Two-phase model is suitable for blow-down type with saturated compressible fluid as $N_2O$, presented the result by Part 1. HDPE as Fuel, and $N_2O$ as oxidizer were used during the static firing test. The combustor were designed for an average thrust of 30 kgf where oxidizer tank pressure in set to 50 bar. The numerical results of internal ballistic showed good agreements with static firing test results where thrust, oxidizer tank pressure and chamber pressure are compared.

  • PDF

Experimental Study of the Supersonic Free Jet Discharging from a Petal Nozzle (페탈노즐로부터 방출되는 초음속 자유제트에 관한 실험적 연구)

  • Lee, Jun-Hee;Kim, Jung-Bae;Gwak, Jong-Ho;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2133-2138
    • /
    • 2003
  • In general, flow entrainment of surrounding gas into a supersonic jet is caused by the pressure drop inside the jet and the shear actions between the jet and the surrounding gas. In the recent industrial applications, like supersonic ejector system or scramjet engine, the rapid mixing of two different gases is important in that it determines the whole performance of the flow system. However, the mixing performance of the conventional circular jet is very low because the shear actions are not enough. The supersonic jet discharging from a petal nozzle is known to enhance mixing effects with the surrounding gas because it produces strong longitudinal vortices due to the velocity differences from both the major and minor axes of petal nozzle. This study aims to enhance the mixing performance of the jet with surrounding gas by using the lobed petal nozzle. The jet flows from the petal nozzle are compared with those from the conventional circular nozzle. The petal nozzles employed are 4, 6, and 8 lobed shapes with a design Mach number of 1.7 each, and the circular nozzle has the same design Mach number. The pitot impact pressures are measured in detail to specify the jet flows. For flow visualization, the schlieren optical method is used. The experimental results reveal that the petal nozzle reduces the supersonic length of the supersonic jet, and leads to the improved mixing performance compared with the conventional circular jet.

  • PDF

Aerodynamic Noise Analysis Using the Permeable Surface for UH-1H Rotor Blade in Hovering Flight Condition (UH-1H 로터 블레이드의 제자리 비행 시 투과면을 이용한 원방 소음 해석)

  • Kim, Ki Ro;Park, Min Jun;Park, Soo Hyung;Lee, Duck Joo;Park, Nam Eun;Im, Dong Kyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.376-384
    • /
    • 2018
  • The aerodynamic far-field noise was computed by an acoustic analogy code using the permeable surface for the UH-1H rotor blade in hover. The permeable surface surrounding the blade was constructed to include the thickness noise, the loading noise, and the flow noise generated from the shock waves and the tip vortices. The computation was performed with compressible three-dimensional Euler's equations and Navier-Stokes equations. The high speed impulsive noise was predicted and validated according to the permeable surface locations. It is confirmed that the noise source caused by shock waves generated on the blade surface is a dominant factor in the far-field noise prediction.

Aerodynamic Design of a Canard Controlled 2D Course Correction Fuze for Smart Munition (카나드 기반의 지능탄 조종 장치 공력설계)

  • Park, Ji-Hwan;Bae, Ju-Hyeon;Song, Min-Sup;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • Course correction munition is a smart projectile which improves its accuracy by the control mechanism equipped in the fuze section with canard. In this paper, various aerodynamic configurations of the fuze section were analysed by utilizing a semi-empirical method and a CFD method. A final canard configuration showing the least drag was then determined. During the CFD simulation, it was found that the k-${\omega}$ SST turbulence model combined with O-type grid base is suitable for the prediction of the base drag. Finally, the aerodynamic characteristics of the smart munition and the change of drag due to the canard installation were analysed.

Numerical Analysis on the Transient Load Characteristics of Supersonic Steam Impinging Jet using LES Turbulence Model (LES 난류모델을 이용한 초음속 증기 충돌제트의 과도하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.77-87
    • /
    • 2018
  • In the case of high-energy line breaks in nuclear power plants, supersonic steam jet is formed due to the rapid depressurization. The steam jet can cause impingement load on the adjacent structures, piping systems and components. In order to secure the design integrity of the nuclear power plant, it is necessary to evaluate the load characteristics of the steam jet generated by high-energy pipe rupture. In the design process of nuclear power plant, jet impingement load evaluation was usually performed based on ANSI/ANS 58.2. However, U.S. NRC recently pointed out that ANSI/ANS 58.2 oversimplifies the jet behavior and that some assumptions are non-conservative. In addition, it is recommended that dynamic analysis techniques should be applied to consider transient load characteristics. Therefore, it is necessary to establish an evaluation methodology that can analyze the dynamic load characteristics of steam jet ejected when high energy pipe breaks. This research group has developed and validated the CFD analysis methodology to evaluate the transient behavior of supersonic impinging jet in the previous study. In this study, numerical study on the transient load characteristics of supersonic steam jet impingement was carried out and amplitude and frequency analysis of transient jet load was performed.