• Title/Summary/Keyword: 압입시험

Search Result 200, Processing Time 0.033 seconds

Simulation of Ball Indentation Process by Elasto-Plastic Contact Analysis (탄소성 접촉 해석법을 이용한 볼 압입시험의 시뮬레이션)

  • 이병채;곽병만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.185-192
    • /
    • 1988
  • Computation of the elasto-plastic solution of ball indentation was carried out by the quadratic programming method. The problem was formulated as an elasto-plastic contact problem under the assumption of small displacement and small deformation and then transformed into a minimization problem. Finite element approximation resulted in a quadratic programming problem. Numerical and experimental study were done with aluminium Al 2024-T351 and commercially pure copper. The computed load-displacement curves were in good agrement with those obtained from experiments. Tabor's relationship for representative strains was also examined. Stress distributions were found to resemble closely those results available in the literature.

Evaluation of Mechanical Properties of Welded Joints by an Instrumented Indentation Test and Fatigue Life Evaluation (계장화 압입시험에 의한 용접부의 물성 측정 및 피로수명 예측)

  • Goo, Byeong-Choon;Lee, Dong-Hyung;Kwon, Dong-Il;Choi, Yeol
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • When material properties depend much on positions in a material or it is difficult to make test specimens from a material or component, an instrumented indentation test described in ISO 14577-1, 14577-2 or KS B 0950 can be used to measure material properties and damage. In this study, first of all, the principals of the instrumented indentation test, KS B 0950 are introduced and yield strengths, tensile strengths and work hardening exponents of base materials, heat affected zones and weld materials are measured. In addition, the influence of post-weld heat treatment on the material properties is investigated. Finally the fatigue lift of butt welded specimens are evaluated by the local strain approach. To calculate local strains and stresses, elasto-plastic finite element analysis is conducted using the measured properties.

Hardness Estimation of Compressor Journal for a Use of Instrumented Indentation Techniques (계장화 압입시험법을 이용한 차량용 컴프레서 저널 경도 평가)

  • Kwak, Sung-Jong;Jin, Ji-Won;Kim, Tae-Seong;Noh, Ki-Han;Kang, Ki-Weon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.376-381
    • /
    • 2012
  • This paper deals with application of instrumented indentation technique for quality inspection methodology for automobile component. For this, the instrumented indentation tests were performed the normal and cracked compressor journal, which is made from spheroidal graphite cast iron and utilized in air-conditioning system. And the Brinell hardness was estimated using the unloading slope and maximum indentation force. With the aid of Normal distribution, this Brinell hardness was statistically compared and analyzed with hardness measured by indentation hardness tests. Also, application possibility of reliability-based quality inspection criteria for compressor journal was evaluated through the probabilistic analysis for the Brinell hardness estimated by instrumented indentation technique.

A Simple Method for the Estimation of Hyperelastic Material Properties by Indentation Tests (압입시험을 통하여 초탄성 재료 물성치를 평가하는 단순한 방법)

  • Song, Jae-Uk;Kim, Min-Seok;Jeong, Gu-Hun;Kim, Hyun-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.273-278
    • /
    • 2019
  • In this study, a new simple method for the estimation of hyperelastic material properties by indentation tests is proposed. Among hyperelastic material models, the Yeoh model with three material properties ($C_{10}$, $C_{20}$, $C_{30}$) is adopted to describe the strain energy density in terms of strain invariants. Finite element simulations of the spherical indentation of hyperelastic materials of the Yeoh model with different material properties are performed to establish a database of indentation force-displacement curves. The indentation force-displacement curves are fitted by cubic polynomials, which are approximated as a product of third-order polynomials of ($C_{10}$, $C_{20}$, $C_{30}$). A regression analysis is conducted to determine the coefficients of the equations for the indentation force-displacement curve approximations. A regression equation is used to estimate the hyperelastic material properties. The present method is verified by comparing the estimated material properties with true values.

Presumption on Wear life of TiN Film (TiN 경질박막의 마모 수명 예측에 관한 연구)

  • 정기훈;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.41-46
    • /
    • 1997
  • TiN 코팅은 마모에 대한 저항성 및 고체 윤활 효과가 매우 우수하여 내마모성 및 저마찰이 요구되는 절삭공구나 피스톤 베어링 및 각종 축계의 코팅막으로 사용이 증가되고 있다. 일반적으로 재료의 경도와 인성은 서로 상반 관계를 갖고 있어 공학적으로 경도와 인성을 모두 요구하는 표면을 얻기 위해 연질 모재 위의 세라믹 코팅은 그 요구를 만족시킬 수 있는 가장 각광받는 표면처리 방법중의 하나이다. 그러나, TiN과 같은 경질 박막의 공학적 적용시 가장 요구되는 마모수명은 모재의 조도나 경도, 증착 방법, 접촉 상태, 코팅막의 두께 및 마모의 발생 기구 등에 따라 마찰 및 마모 메커니즘의 현저한 차이를 나타내기 때문에 예측이 거의 불가능한 실정이고, 아직까지 이러한 마모수명 비교 평가방법에 대한 기준 설정 및 정량적 정립이 이루어지지 않고 있다. 본 연구에서는 모재의 경도, 조도, 코팅 두께가 다른 TiN 경질 박막에 압입시험과 스크래치시험시 발생되는 균열 발생 메커니즘과 미끄럼 시험시 발생되는 마모 메커니즘의 연계성을 밝히고 압입 및 스크래치 시험시 코팅막이 손상되는 임계하중과 미끄럼 시험시 접촉하중 변화에 따른 마모수명의 정량적 연관성을 찾아보고자 한다.

  • PDF

A Study of the Mechanical Properties of Human Trabecular Bone by Spherical Indentation Test (구형압입시험을 통한 망상골의 기계적 물성 연구)

  • 배태수;김정규;이태수;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.419-424
    • /
    • 2001
  • We intended to evaluate the Young's modulus of trabecular bone of a human distal femur by spherical Indentation test and CT images and to quantify relationships between the direction of load, density. and Young's modulus. The specimens were scanned at 1 mm intervals on CT scanner After scanning the bones were sectioned with diamond saw. producing 8mm cubes of trabecular bone. The tubes were mechanically tested in inferior-superior(IS), anterior-posterior(AP). and medial-lateral(ML) direction with custom-made device. After testing, the real apparent density of specimens were measured. The results of this study showed that the IS modulus was significant1y greater than both the AP and ML modulus and the AP modulus was also greater than ML modulus significantly(p〈0.01) A significant Power relationship between the apparent density and the modulus was also found.

  • PDF

A Numerical Approach to Young's Modulus Evaluation by Conical Indenter with Finite Tip-Radius (유한선단반경을 갖는 원뿔형 압입자에 의한 영률평가 수치접근법)

  • Lee, Jin-Haeng;Kim, Deok-Hoon;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • Instrumented sharp indentation test is a well-directed method to measure hardness and elastic modulus. The sharp indenter such as Berkovich and conical indenters have a geometrical self-similarity in theory, but the self-similarity ceases to work in practice due to inevitable indenter tip-blunting. In this study we analyzed the load-depth curves of conical indenter with finite tip-radius via finite element method. Using the numerical regression data obtained from Kick's law, we first confirmed that loading curvature is significantly affected by tip radius as well as material properties. We then established a new method to evaluate Young's modulus, which successfully provides the value of elastic modulus with an average error of less than 2%, regardless of tip-radius and material properties of both indenter and specimen.