• Title/Summary/Keyword: 압밀거동

Search Result 344, Processing Time 0.019 seconds

매립지 원지반 침하량 역산에 의한 기초 압축 특성 연구

  • 김용인;현근일;박정용;장연수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.399-403
    • /
    • 2003
  • 해안의 연약지반에 건설되는 폐기물 매립지는 매립지의 안정성 평가를 위하여 하부기초지반의 침하거동 특성에 대한 분석이 필요하다. 본 연구에서는 현장 침하계측자료를 이용하여 현장 간극비와 현장 압축지수를 역산하여 그 특성을 분석하였다. 그 결과 매립초기에는 상부하중에 의한 유효응력증가가 미소하여 하부기초지반은 과압밀 특성을 나타내고 현장 압축지수 변화가 미소하였으나, 매립이 진행될수록 상부하중이 선행압밀하중을 초과하여 정규압밀영역으로 변화함에 따라 큰 폭의 증가를 보였다.

  • PDF

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Drainage (방사방향 배수를 고려한 초연약 지반의 비선형 유한변형 자중압밀 거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.17-28
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials, because they additionally provide a radial drainage path in a deep soil deposit. In practice, vertical drains are commonly installed in the process of self-weight consolidation of a dredged soil deposit. The absence of an appropriate analysis tool for this situation makes it substantially difficult to estimate self-weight consolidation behavior considering both vertical and radial drainage. In this paper, a new method has been proposed to take into account both vertical and radial drainage conditions during nonlinear finite strain self-weight consolidation of dredged soil deposits. For 1-D nonlinear finite strain consolidation in the vertical direction, the Morris (2002) theory and the PSDDF analysis are adopted, respectively. On the other hand, to consider the radial drainage, Barron's vertical drain theory (1948) is used. The overall average degree of self-weight consolidation of the dredged soil is estimated using the Carillo formula (1942), in which both vertical and radial drainage are assembled together. A series of large-scale self-weight consolidation experiments being equipped with a vertical drain have been carried out to verify the analysis method proposed in this paper. The results of the new analysis method were generally in agreement with those of the experiments.

Numerical Analyses on Consolidation Promotion Effect of Soft Clay Ground by Prefabricated Vertical Drain (PVD에 의한 연약점토지반의 압밀촉진효과에 대한 수치해석)

  • You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • In this paper, a series of numerical analyses on soft clay ground improved by PVD were carried out, in order to investigate the consolidation promotion effect considering PVD width and surcharge pressure. In the numerical analyses, an elasto-viscoplastic three-dimensional consolidation finite element method was applied, in which the applicability of numerical analyses could be confirmed comparing with consolidation behavior simulated at the laboratory. And, through the results of the numerical analyses, consolidation behaviors of soft clay ground with elapsed time was elucidated, together with the effects of PVD width and surcharge pressure.

  • PDF

A Study on Characteristics of Ground Improvement in the Ground Surrounding by Sand Piles (Sand Pile 주변지반에서의 지반개량특성에 관한 연구)

  • 천병식;여유현
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.203-212
    • /
    • 2000
  • 샌드파일 주변지반은 교란으로 스미어 영향과 베수저항에 의해 압밀지연 현상이 발생하는 것으로 알려져 있다. 이와 같이 샌드파일 주변지반의 압밀특성에 미치는 영향을 파악하기 위하여 지반물성치에 따른 예측치와 계측을 통한 실측치에 대한 비교검토를 실시하였다. 압밀계수 특성인 압밀소요기간은 수평과 연직압밀계수를 동일하게 평가할 경우 예측과 실측치가 매우 유사한 결과를 보여주는 것으로 나타났다. 압축지수 특성인 침하량 분석결과 예측치에 비해 60~90%정도로 작게 평가되는데 이것은 공동확장이론에 의한 초기 방사(측)방향 압축을 고려할 경우 유사한 값을 얻을 수 있다. 따라서 샌드파일 주변지반에서의 거동특성을 파악하기 위하여 스미어 배수저항뿐 아니라, 초기 방사(측)방향 압축을 고려한 개량특성으로서의 평가도 필요한 것으로 판단된다.

  • PDF

Consolidation Analysis of Soft Clay by Using Modified Consolidation Theory (수정압밀이론을 이용한 연약지반의 압밀해석)

  • Kim, Soo Il;Lee, Jun Hwan;Lee, Seung Rae;Jeong, Sang Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.565-572
    • /
    • 1994
  • Consolidation behavior on soft clay was investigated by using one- and two-dimensional analysis based on original and modified one dimensional consolidation theory. For the analytical model, the embankment was simulated by applying single- or multi-surcharge loading to the surface of soft clay. Based on the results obtained, it was found that the predicted settlement by one dimensional consolidation theory was most of the time higher than the observed one at the mid- and especially lateral-zone of embankment. When compared with two dimensional analysis, the result of modified one dimensional consolidation analysis showed almost similar trend to the observed one. There fore even in case where proper selection of soil parameters, one dimensional consolidation theory like as modified one dimensional consolidation theory could be suggested due to its convenience.

  • PDF

Undrained Behaviour of Normally Consolidated Clay Foundation Using Single-Hardening Constitutive Model (단일황복면 구성모델을 이용한 정규압밀 점토지반의 비배수 거동해석)

  • Jeong, Jin Seob;Lee, Kang Ill;Park, Byung Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1229-1241
    • /
    • 1994
  • This study aims at investigating the undrained behavior of the normally consolidated clay foundation using single hardening constitutive model based on elasticity and plasticity theories. The specimen employed was sampled at Mooan near the down stream of Young San river and remolded into consolidation apparatus. 11 soil parameters for the model was determined from simple tests such as isotropic compression and consolidation undrained triaxial compression tests. FEM program to predict the undrained behavior of the foundation was developed and back analysis was performed to verify prediction ability of the FEM program. Finally plate load test on the 2-dimensional model foundation was carried out in order to compare numerical analysis and observed values on the foundation.

  • PDF

Characteristics of Settlement Reduction and Consolidation Behavior of Composition Ground Improved by Recycled-Aggregate Porous Concrete Pile (순환골재 다공질 콘크리트말뚝으로 개량된 복합지반의 침하저감 및 압밀거동 특성)

  • You, Seung-Kyong;Kim, Se-Won;Choi, Hang-Seok;Lee, Chang-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.25-30
    • /
    • 2008
  • In this research, the characteristics of settlement and consolidation behavior of the composite ground formation reinforced by Recycled-Aggregate Porous Concrete Pile (RAPP) were evaluated by conducting a series of laboratory chamber tests. The effect of settlement reduction was verified by comparing the settlement of the composite ground formation with that of the unreinforced ground. In addition, it was studied how much the RAPP can accelerate consolidation in assessment of the degree of consolidation in the composite ground formation. The amount of settlement reduction was decreased with an increase on surcharge pressure, but it was greater than that of the SCP method. The RAPP and the SCP showed a similar rate of consolidation.

  • PDF

Consolidation Characteristics of Dredged Mixed Soil with Inserted Materials (혼입재료에 따른 준설 매립 혼합토의 압밀 특성)

  • Yoon Hyun-Suk;Lee Ki-Ho;Park Jun-Boum;Kim Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2005
  • In this study, consolidation test and numerical analysis were performed with the aim of investigating the characteristics of consolidation behavior of mixed soil with the amount and particle shape of inserted materials. Mixed soil was made up of matrix (dredged clay) and inserted material (crashed oyster shell and/or sand). The concept of stress share ratio was introduced to evaluate the consolidation characteristics of mixed soils. And the finite differential numerical analysis was carried out by applying the Mikasa's consolidation theory. From the results of experiments and numerical analysis, it was verified that mixed soil consolidation behavior is affected by changes in inserted material. When a similar amount of granular material was inserted, the compressibility of the clay matrix of oyster shell mixed soil was smaller than that of sand mixed soil.

A Study on Consolidation Characteristic of Dredged Fill Using Geotechnical Centrifuge (원심모형시험에 의한 준설지반의 압밀특성연구)

  • Kim, Hee-Chul;Kim, Heung-Seok;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.45-55
    • /
    • 2008
  • In this study, the in-situ model test has been conducted to estimate and analyze consolidation behavior of the ground by using the miniature test that reconstructs economically geotechnical behavior of in-situ full scale structure. To analyze the relation of effective stress, void ratio and coefficient of permeability at the self-weight consolidation stage, the low stress seepage consolidation test has been conducted and the involution function of constitutive equation had been obtained from the result of the curve fitted seepage consolidation test. As a result of the numerical analysis that had been conducted on the representative section using a constitute equation, final settlement was similar to those of self-weight consolidation of the centrifugal model test. But it was more or less smaller. It seems that these trends are caused by the difference between estimated values.

Prediction and Assessment on Consolidation Settlement for Soft Ground by Hydraulic Fill (준설매립 연약지반에 대한 압밀침하 예측 및 평가)

  • Jeon, Je-Sung;Koo, Ja-Kap;Oh, Jeong-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2008
  • This paper describes the performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area composed of soft marine clay with high water content and high compressibility. From field monitoring results, excessive ground settlement compared with predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared with field monitoring results after additional surcharge was applied. It might be used for verification of recalculated results.