• Title/Summary/Keyword: 압력 파형

Search Result 98, Processing Time 0.023 seconds

Probabilistic Analysis of Blasting Loads and Blast-Induced Rock Mass Responses in Tunnel Excavation (터널발파로 인한 굴착선주변 암반거동의 확률론적 연구)

  • 이인모;박봉기;박채우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.89-102
    • /
    • 2004
  • The generated blasting pressure wave initiated under decoupled-charge condition is a function of peak blasting pressure, rise time, and wave-shape function. The peak blasting pressure and the rise time are also the function of explosive and rock properties. The probabilistic distributions of explosive and rock properties are derived from the results of their property tests. Since the probabilistic distributions of explosive and rock properties displayed a normal distribution, the peak blasting pressure and the rise time can also be regarded as a normal distribution. Parameter analysis and uncertainty analysis were performed to identify the most influential parameter that affects the peak blasting pressure and the rise time. Even though the explosive properties were found to be the most influential parameters on the peak blasting pressure and the rise time from the parameter analyses, the result of uncertainty analysis showed that rock properties constituted major uncertainties in estimating the peak blasting pressure and the rise time rather than explosive properties. Damage and overbreak of the remaining rock around the excavation line induced by blasting were evaluated by dynamic numerical analysis. A user-subroutine to estimate the rock damage was coded based on the continuum damage mechanics. This subroutine was linked to a commercial program called 'ABAQUS/Explicit'. The results of dynamic numerical analysis showed that the rock damages generated by the initiation of stopping hole were larger than those from the initiation of contour hole. Several methods to minimize those damages were proposed such as relocation of stopping hole, detailed subdivision of rock classification, and so on. It was found that fracture probability criteria and fractured zones could be distinctively identified by applying fuzzy-random probability.

Prediction of Flow Behavior and Pressure Drop of Spirally Corrugated Steel Pipe (나선형 파형강관에서의 유동특성 및 압력강하 예측)

  • Park Jong-Hark
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.18-22
    • /
    • 2004
  • Numerical investigation has been conducted to figure out flow behavior and pressure drop characteristics of spirally corrugated steel pipe which is widely used in civil, industrial and agricultural field owing to many advantages such as good corrosion resistance and durability, strength, easy and quick installation. Also the poly-ethylene coating spirally corrugated steel pipe has the long life under condition of sea water immerged. In the present study, flow behavior in the spirally corrugated pipe and influence of P/d/sub h/(ratio of wave pitch to hydraulic diameter) to pressure drop are investigated by CFD with various Reynolds number. And also friction factor is estimated by pressure drop obtained by flow analysis. According to computation results, the flow runs spirally up and down along the spiral corrugation in the vicinity of wall, but the effect of spiral corrugation disappears in core region of pipe. As P/d/sub h/ becomes small, more pressure drop occurs in spirally corrugated Pipe. Besides, friction factor augmentation becomes much larger as Re increases. In case of p/d/sub h/=0.38, Pressure drop and friction factor of spirally corrugated pipe are about four times larger than smooth pipe at Re: 1.46×10/sup 6/.

A Study of Dust Effect on Performance of Heat Exchangers with Louver and Wavy Fins (루버형과 파형핀 열교환기에서 분진이 성능에 미치는 영향에 관한 연구)

  • Lee, Young-Lim;Hwang, Soon-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2009
  • Automotive heat exchangers use louver fins for their high efficiency. However, the efficiency can significantly drop for constructional vehicles or heavy equipments due to dust deposited on the louver fins with narrow slits. Thus it is necessary to develop new fins that lead to less fouling, so that a better performance can be achieved after exposure to a dusty environment over long period of time. New wavy fins were considered in the study and numerically analysed to compare with louver fins in the areas of air-side pressure drop, heat release rate, and particulate deposition. In addition, an experiment was done on the pressure drop and the particulate deposition. The results showed that the wavy fins would be a better choice for long-term use due to the excellent dust-proof performance in comparison to louver fins, in spite of the initial inferior performance of heat release.

A Numerical Calculation of Viscous Flow around a Hydrofoil Advancing beneath the Free Surface (자유수면 아래서 전진하는 수중익 주위의 점성유동 해석)

  • J.J. Park;S.M. Jeong;Y.G. Lee;S.H. Lee;S.W. Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.72-82
    • /
    • 1995
  • In the present paper, flow characteristics and free surface waves generated by a submerged hydrofoil advancing with an uniform speed are calculated. Using a numerical method based on a MAC(Marker And Cell) method, the Navier-Stokes and the continuity equations are solved to simulate flow fields around the hydrofoil. Computations are carried out in a rectangular grid system in which grids are concentrated near the foil and the free surface to improve numerical accuracies. Viscous flow phenomenas including pressure distributions are computed. Moreover, the influences of submerged depths upon the generated wave profiles and the wave breaking phenomena are also investigated. Experiments are performed at the towing tank of Inha University to measure free surface wave elevations due to the advancing hydrofoil. The computational results are compared with the present and the other available experimental data to show the accuracy of the numerical method developed.

  • PDF

Instability of Plunging Breaking Wave Impact on Inclined Cylinder (경사진 실린더에 작용하는 플런징 쇄파 충격력의 불안정성 고찰)

  • Hong, Key-Yong;Shin, Seung-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.187-192
    • /
    • 2007
  • Impact on cylindrical surface caused by plunging breaking waves is investigated experimentally. The breaking waves are generated in a wave flume by decreasing the wave maker frequencies linearly and focusing the generated wave components at one specific location. The breaking wave packets are based on constant wave steepness spectrum. Three inclination angles of cylinder are applied to examine the effect of contact angle between cylinder and front surface of breaking waves. Also, the effect of cylinder diameter on pressure distribution and its peak value is investigated by adopting three cylinders with different diameters. The longitudinal location of cylinder is slightly moved in eight different points to find out a probable maximum value of impact pressure. The pressures and total force on cylinder surface are measured by piezo-electric pressure sensors and 3-components load cell with 30kHz sampling rate. The variation of peak impact pressures and forces is analyzed in terms of cylinder diameter, inclination angle and location. Also, the pressure distribution on cylindrical surface is examined. The cylinder location and surface position are more important parameters that govern the magnitude and shape of peak pressures, while the cylinder diameter and inclined angle are relatively insignificant. In a certain conditions, the impact phenomenon becomes very unstable which results in a large variation of measured valves in repeated runs.

  • PDF

Change of Piping-System Dynamics with Installation of Pogo Suppression Device (포고억제장치 설치에 따른 배관계 동특성 변화)

  • Lee Jun Kyoung;Lee Sang Yong;Lee Han Ju;Oh Seung Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.32-39
    • /
    • 2005
  • The effectiveness of the pogo suppression device (PSD) on the response of the piping system simulating the fuel (or oxidizer) supply lines of the rocket engines was investigated. The system response defined as the ratio of the flow rate to the pressure in the main tube was obtained for various PSD gas volumes $((0\~2)\times10^{-3}m^3)$ and three different baffle hole diameters (5, 50, 115mm). Existence of a gas volume in the PSD reduced the system resonance frequency. With a larger gas volume, the resonance frequency became lower, but only slightly, while the fluctuations of the main tube pressure and the flow rate damped down considerably. The resonance frequency decreased with the increase of the PSD inlet restriction (or the decrease of the baffle hole diameter), though slightly. However, with a larger inlet restriction, the PSD pressure wave showed a delayed response with the smaller amplitude compared to the pressure variation in the main tube.

Experimental Investigation on Air Consumption and Pressure Wave Propagation inside A Filter Bag of A Dust Collector (집진기의 공기소모량과 백 필터내의 압력전파에 대한 실험적 연구)

  • Jeung, Won-Rark;Hong, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.886-891
    • /
    • 2008
  • This experimental investigation is concerned with the relationship between the electrical-on time of a solenoid which is located on the top of a pulse valve and air consumption of a dust collector. For the air consumption per pulse would be one of major factors affecting the operating cost of a dust collector, more attention is needed on the behaviour of a pulse valve. A pulse jet is blasted into a bag filter as the diaphragm valve opens and inflates a bag filter. This air-blast breaks up the dust layer and cleans the filter by dislodging dust cake. It is interpreted in this research that the cleaning filter is done by the impulse of a pulse jet. Hence, the magnitude and fluctuation of the dynamic pressure is measured using by a dynamic pressure sensor and the impulse is obtained by integrating dynamic pressure variation against time. Through this experimental work, conclusions are drawn implementing magnitude of averaged impulsive pressure per pulse or pressure impulse per unit volume of consumed air.

Suction Pressures with respect to the Operational Modes using the Multi-bore Capillary Membranes in the Membrane Bioreactor (생물막 반응기내 다공성 중공사형막을 이용한 운전방식에 따른 흡입 압력)

  • Kim, Min Hyeong;Koo, Eeung Mo;Lee, Min Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.343-350
    • /
    • 2021
  • In this study the suction pressure was measured with respect to operational time by submersing the multi-bore capillary membrane module in membrane bioreactor(MBR). The hexagonal shape capillary module which has the nominal pore size of 0.2 ㎛, outer diameter of 6.4 or 4.2 mm was immersed in MLSS 8,000 mg/L active sludge aqueous solution, and confirmed changes with respect to permeation flux and air flow rate. It was operated by the filtration/relaxation(FR), FR with backwashing(FR/BW), and sinusoidal flux continuous operation(SFCO) modes. The suction pressure for the SFCO and FR modes was lower at 30 and 50 L/m2·hr, respectively. In addition, the suction pressure of the module with a small outer diameter was relatively low. The suction pressure of a large outer diameter was greatly increased, but it could be reduced by more than 40% by backwashing.

Velocity-effective stress response of $CO_2$-saturated sandstones ($CO_2$로 포화된 사암의 속도-유효응력 반응)

  • Siggins, Anthony F.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Three differing sandstones, two synthetic and one field sample, have been tested ultrasonically under a range of confining pressures and pore pressures representative of in-situ reservoir pressures. These sandstones include: a synthetic sandstone with calcite intergranular cement produced using the CSIRO Calcite In-situ Precipitation Process (CIPS); a synthetic sandstone with silica intergranular cement; and a core sample from the Otway Basin Waarre Formation, Boggy Creek 1 well, from the target lithology for a trial $CO_2$ pilot project. Initial testing was carried on the cores at "room-dried" conditions, with confining pressures up to 65 MPa in steps of 5 MPa. All cores were then flooded with $CO_2$, initially in the gas phase at 6 MPa, $22^{\circ}C$, then with liquid-phase $CO_2$ at a temperature of $22^{\circ}C$ and pressures from 7 MPa to 17 MPa in steps of 5 MPa. Confining pressures varied from 10 MPa to 65 MPa. Ultrasonic waveforms for both P- and S-waves were recorded at each effective pressure increment. Velocity versus effective pressure responses were calculated from the experimental data for both P- and S-waves. Attenuations $(1/Q_p)$ were calculated from the waveform data using spectral ratio methods. Theoretical calculations of velocity as a function of effective pressure for each sandstone were made using the $CO_2$ pressure-density and $CO_2$ bulk modulus-pressure phase diagrams and Gassmann effective medium theory. Flooding the cores with gaseous phase $CO_2$ produced negligible change in velocity-effective stress relationships compared to the dry state (air saturated). Flooding with liquid-phase $CO_2$ at various pore pressures lowered velocities by approximately 8% on average compared to the air-saturated state. Attenuations increased with liquid-phase $CO_2$ flooding compared to the air-saturated case. Experimental data agreed with the Gassmann calculations at high effective pressures. The "critical" effective pressure, at which agreement with theory occurred, varied with sandstone type. Discrepancies are thought to be due to differing micro-crack populations in the microstructure of each sandstone type. The agreement with theory at high effective pressures is significant and gives some confidence in predicting seismic behaviour under field conditions when $CO_2$ is injected.

Poly-tetrafluoro-ethylene와 polyethylene 튜브 내부에 형성된 유전체 장벽 방전의 전류-전압 특성에 대한 연구

  • Jo, Yong-Gi;Choe, Yu-Ri
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.331.1-331.1
    • /
    • 2016
  • 내부지름이 2.0 mm 이하인 PTFE와 PE 튜브에 진공장치를 이용하여 튜브 내부의 압력을 감압하여 진공상태를 형성하였다. 진공기밀 후에 반응성 가스를 인입하여 튜브 외부에 장착된 전극을 통하여 고전압의 AC 전압을 인가하여 튜브 내부에 선택적으로 유전체 장벽 방전을 유도하였다. 본 연구에서는 유전율이 3.0 이하로 낮은 PTFE와 PE 튜브에 유전체 장벽방전이 유도될 때 나타나는 전압과 전류의 파형을 분석하여 방전의 개시와 방전의 형태를 조사하였다. 주파수 40 kHz인 AC 전원(PEII, Advanced Energy)과 Loadmatch 모듈을 이용하여 4 kV 이하의 전압을 인가하여 플라즈마 방전 유도하였다. 튜브에 인가고전압 프로브와 전류 프로브를 이용하여 오실로스코프를 I-V 분석을 실시하였고, 실험 결과 대기압 방전에서 유도되는 유전체 장벽방전의 I-V 특성과 달리 방전의 형태가 유전체장벽방전과 글로우방전이 혼합된 형태로 나타났다. 또한 유전체 장벽방전을 통해 튜브 내부에 형성되는 플라즈마에 대한 분석으로 OES 광분석을 실시하여, 방전 시간과 전압 변화에 따른 고분자 표면으로부터 방출되는 활성종에 대한 분석을 실시하였다.

  • PDF