• Title/Summary/Keyword: 압력 교환

Search Result 153, Processing Time 0.033 seconds

Numerical Modeling of Flow Characteristics within the Hyporheic Zones in a Pool-riffle Sequences (여울-소 구조에서 지표수-지하수 혼합대의 흐름 특성 분석에 관한 수치모의 연구)

  • Lee, Du-Han;Kim, Young-Joo;Lee, Sam-Hee
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.75-87
    • /
    • 2012
  • Hyporheic zone is a region beneath and alongside a stream, river, or lake bed, where there is mixing of shallow groundwater and surfacewater. Hyporheic exchange controls a variety of physical, biogeochemical and thermal processes, and provides unique ecotones in a aquatic ecosystem. Field and experimental observations, and modeling studies indicate that hyporheic exchange is mainly in response to pressure gradients driven by the geomorphological features of stream beds. In the reach scale of a stream, pool-riffle structures dominate the exchange patterns. Flow over a pool-riffle sequence develops recirculation zones and stagnation points, and this flow structures make irregular pressure gradient which is driving force of the hyporheic exchange. In this study, 3 D hydro-dynamic model solves the Reynolds-averaged Navier-Stokes equations for the surface water and Darcy's Law and the continuity equation for ground water. The two sets of equations are coupled via the pressure distribution along the interface. Simulation results show that recirculation zones and stagnation points in the pool-riffle structures dominantly control the upwelling and downwelling patterns. With decrease of recirculation zones, length of donwelling zone formed in front of riffles is reduced and position of maximum downwelling point moves downward. The numerical simulation could successfully predict the behavior of hyporheic exchange and contribute the field study, river management and restoration.

In-situ Phase Transition Study of Minerals using Micro-focusing Rotating-anode X-ray and 2-Dimensional Area Detector (집속 회전형 X-선원과 이차원 검출기를 이용한 광물의 실시간 상전이 연구)

  • Seoung, Dong-Hoon;Lee, Yong-Moon;Lee, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.79-88
    • /
    • 2012
  • The increased brightness and focused X-ray beams now available from laboratory X-ray sources facilitates a variety of powder diffraction experiments not practical using conventional in-house sources. Furthermore, the increased availability of 2-dimensional area detectors, along with implementation of improved software and customized sample environmental cells, makes possible new classes of in-situ and time-resolved diffraction experiments. These include phase transitions under variable pressure- and temperature conditions and ion-exchange reactions. Examples of in-situ and time-resolved studies which are presented here include: (1) time-resolved data to evaluate the kinetics and mechanism of ion exchange in mineral natrolite; (2) in-situ dehydration and thermal expansion behaviors of ion-exchanged natrolite; and (3) observations of the phases forming under controlled hydrostatic pressure conditions in ion-exchanged natrolite. Both the quantity and quality of the in-situ diffraction data are such to allow evaluation of the reaction pathway and Rietveld analysis on selected dataset. These laboratory-based in-situ studies will increase the predictability of the follow-up experiments at more specialized beamlines at the synchrotron.

Ion Exchange of Glutamic Acid Coupled with Crystallization (결정화 반응이 결합된 글루탐산의 이온교환)

  • 이기세
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.606-612
    • /
    • 1996
  • A specific ammino auid in a mixture can be crystallized inside an ion exchange column when displacer concentration is high enough to concentrate the amino acid in a pure band beyond its solubility limit. Glutamic acid formpd a discrete crystal layer in a cation exchanger column by operating displacement development mode and using a high concentration of displacer NaOH. The glutamic acid crystal formed was eluded from the column with the effluent stream and collected in a fraction collector. When 1.0 M of NaOH was used as a displacer, more than 60% of the loaded glutamic acid was recovered as crystal. The continuous crystallization and dissolution of crystal occurred, resulting in apparent movement of the crystal along the column without clogging or pressure increase. NaOH was proved a better displacer than NaCl because hydroxide ions neutralized hydrogen ions released from the resin and thus reduced the number of hydrogen ion competing with sodium ion for re-adsorption. The displacement development process coupled with crystallization provided higher concentration and recovery of glutamic acrid than conventional chromatography.

  • PDF

A Numerical Study on Pressure Fluctuation and Air Exchange Volume of Door Opening and Closing Speeds in Negative Pressure Isolation Room (음압격리병실에서의 병실 문의 개폐속도에 따른 실간 압력변동 및 공기교환량에 대한 해석적 연구)

  • Kim, Jun Young;Hong, Jin Kwan
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • Purpose: In this study, through the comparison of the pressure fluctuation and air exchange volume in negative isolation room according to the type of the door and door opening/closing speeds, which is one of the main factors causing the cross contamination of the negative pressure isolation room, establishes standard operating procedures to prevent cross contamination in high risk infectious diseases and isolation room design. Methods: In this study, the air flow each of the room is analyzed using ANASYS CFX CODE for flow analysis. In addition, the grid configuration of the door is constructed by applying Immersed Solid Methods. Results: The pressure fluctuation due to the opening and closing of the hinged door was very large when the moment of the hinged door opened and closed. Especially, at the moment when the door is closed, a pressure reversal phenomenon occurs in which the pressure in the isolation room is larger than the pressure in the anteroom. On the other hand, the pressure fluctuation due to the opening and closing of the sliding door appeared only when the door was closed, but the pressure reversal phenomenon not occurred at the moment when the sliding door was closed, unlike the hinged door. As the opening and closing speed of the hinged door increases, the air exchange volume is increased. However, as the opening and closing speed of the sliding door is decreased, the air exchange volume is increased. Implications: According to the results of this study, it can be concluded that the pressure fluctuation due to the opening and closing of the hinged door is greater than the pressure fluctuation due to the opening and closing of the sliding door. In addition, it can be confirmed that the pressure reversal phenomenon, which may cause to reduce the containment effect in negative pressure isolation room, is caused by the closing of the hinged door. Therefore, it is recommended to install a sliding door to maintain a stable differential pressure in the negative isolation room. Also, as the opening and closing speed of the hinged door is slower and the opening and closing speed of the sliding door is faster, the possibility of cross contamination of the room can be reduced. It is therefore necessary to establish standard operating procedures for negative isolation room for door opening and closing speeds.

Development of a Solar Powered Water Pump by Using Low Temperature Phase Change Material ­ System Construction and Operation Analysis ­ (저온 상변화 물질 특성을 이용한 태양열 물펌프 실용화 연구개발(II) ­시스템 구성 및 작동분석)

  • 김영복;이양근;이승규;김성태;나우정;민영봉
    • Journal of Animal Environmental Science
    • /
    • v.9 no.2
    • /
    • pp.69-78
    • /
    • 2003
  • In this study, the energy conversion equipment from the radiation energy to mechanical energy by using n­pentane as the operating fluid was constructed and the performance to pump the water was tested for the utilization of solar powered water pump. The equipment was designed optimally, after the theoretical analyses of the water pumping head and water quantity per cycle were done. The pentane vapour temperature in the condenser and the temperature of the outlet water from the condenser became lowered and the heat transfer rate became higher with decreasing the water inlet level to the condenser. The temperature difference between the condenser and the water tank was significant. Therefore, the distance between the water tank and condenser was recommended to be shorten and the diameter of their connecting pipe was recommended to be narrow in order to reduce the resistance of the fluid passage and improve the heat transfer rate. The amount of water pumped was 1.6­2.4 liters. Mass flow rate of the cooling water became lowered when the cooling water pipe was prolonged from the condenser to improve the heat transfer rate.

  • PDF

An Optimization Study on the NGL Recovery Process Using Turbo-expander (터보 팽창기를 활용한 NGL 회수공정 최적화에 대한 연구)

  • Kim, Yu-Mi;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1473-1478
    • /
    • 2011
  • In this study, simulation and optimization works for a demethanizer column have been performed to obtain ethane and heavier products from a pretreated natural gas stream. Pretreated natural gas feed stream is partially condensed after being precooled by exchanging heat with demethanizer top vapor stream and by using an external refrigeration cycle with a propane refrigerant. Vapor stream is furtherly cooled and partially condensed through a turbo-expander and the power generated from the expansion of turbo-expander was delivered to the compressor for the residue gas compression. Liquid stream is being cooled by Joule-Thomson expansion valve and is fed to the middle section of the demethanizer. Ethane recovery percent for feed natural gas was set to 75% and methane to ethane molar ratio was fixed as 0.015. Propane refrigeration heat duty was reduced by splitting the feed stream and to exchange heat with side reboiler.

The Effect of refrigerant pass & distribution in aluminum parallel flow heat exchanger (알루미늄 평행류 열교환기에서 냉매패스와 분배량 변화의 영향)

  • Kim, Jeong-Sik;Kim, Nae-Hyun;Kim, Kwang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3546-3552
    • /
    • 2009
  • In this study, an analysis code was created for a 190*650*25-mm (W*H*D) parallel-flow evaporator, and research was done on how to increase the heat transfer rate of aluminum PF heat exchanger for application in IDU. After varying the R410A refrigerant up-down flow to two and three passes and the distribution ratio to 1:1:1 and 1:2:2, it was determined that the two-pass flow has a 30% higher partial heat transfer rate and a 25% lower heat transfer coefficient compared to the three-pass flow. As for the distribution ratios of the three-pass flow, 1:1:1 was found to have a lower refrigerant pressure loss than 1:2:2 distribution. It was assumed, though, that the refrigerant distribution had a uniform flow and that its value was thus overestimated in the actual case of maldistribution in each pass.

A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production (수소 생산을 위한 SI Cycle 공정에서의 중간 열교환 공정 모사 연구)

  • Shin, Jae Sun;Cho, Sung Jin;Choi, Suk Hoon;Qasim, Faraz;Lee, Heung N.;Park, Jae Ho;Lee, Won Jae;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.459-466
    • /
    • 2014
  • SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions.

Characteristics of Evaporation Heat Transfer in a Small-Scale Cryogenic Heat Exchange System for the Utilization of LNG Cold Energy (LNG 냉열활용을 위한 초저온 열교환시스템의 축소모형에서 증발 열전달 특성)

  • Nam S. C.;Lee S. C.;Lee Y. W.;Sohn Y. S.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.25-33
    • /
    • 1998
  • The characteristics of evaporation heat transfer for the utilization of LNG cold energy was investigated experimentally using liquified nitrogen and a solution of ethylene-glycol and water under horizontal two-phase conditions in the small-scale equipment of a cryogenic heat exchange system. The inner tubes in the double pipe heat exchanger with 8 mm and 15 mm inner diameter and 6 m length were adopted as a smooth test tubes and enhanced tubes by means of wire-coil inserts. Heat transfer coefficients and Nusselt number for the test tube were calculated from measurements of temperatures, flowrates and pressures. The correlations in a power-law relationship of the Nusselt number, the Reynolds number and Prandtl number for heat transfer were proposed which can be available for design of cryogenic heat exchangers. The correlations showed heat transfer coefficients for the wire-coil inserts were much higher than those for the smooth tubes, increased by more than 2.5 ${\~}$ 5.5 times depending upon the equivalent Reynolds number. Form and length of cryogenic double pipe heat exchanger were proposed for applicable to the utilization of LNG cold energy.

  • PDF

Multi-phase Flow Modeling of Vapor Explosion Propagation (증기폭발 전파과정 해석을 위한 다상유동 모델 개발)

  • Park, I. K.;Park, G. C.;K. H. Bang
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.103-117
    • /
    • 1996
  • A mathematical model of vapor explosion propagation is presented. The model predict two-dimensional, transient flow fields and energies of the four fluid phases of melt drop, fragmented debris, liquid coolant and vapor coolant by solving a set of governing equations with the relevant constitutive relations. These relations include melt fragmentation, coolant-phase-change, and heat and momentum exchange models. To allow thermodynamic non-equilibrium between the coolant liquid and vapor, an equation of state for oater is uniquely formulated. A multiphase code, TRACER, has been developed based on this mathematical formulation. A set of base calculations for tin/water explosions show that the model predicts the explosion propagation speed and peak pressure in a reasonable degree although the quantitative agreement relies strongly on the parameters in the constitutive relations. A set of calculations for sensitivity studies on these parameters have identified the important initial conditions and relations. These are melt fragmentation rate, momentum exchange function, heat transfer function and coolant phase change model as well as local vapor fractions and fuel fractions.

  • PDF