• Title/Summary/Keyword: 압력 교환

Search Result 153, Processing Time 0.025 seconds

A Study on the Status of Recharging of Fire Extinguishers (수동식소화기의 재충전 현황 및 문제점 연구)

  • Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.47-55
    • /
    • 2005
  • Fire extinguisher, which is cost effective and easily accessible, is a very effective way of fire suppression. To keep its initial performance it needs periodical inspection and appropriate maintenance. However, many fire extinguishers of which the powder is incompletely coated deteriorates due to the moisture and leak of charge pressure after several years. Accordingly inappropriate powder replacement and pressurization has widely been doing by unqualified persons. Also, the absence of lifetime for fire extinguisher made people keep old bad fire extinguisher without precise inspection. This study specified those issues through case studies and suggested some ways for the systematic improvement.

  • PDF

Performance Analysis of a 50㎾ Turbo-Generator Gas Turbine Engine with a Recuperator (리큐퍼레이터를 고려한 50KW급 터보제너레이터 가스터빈 엔진의 성능해석)

  • 김수용;수다레프
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.48-55
    • /
    • 1999
  • Performance analysis of a 50KW turbo-generator gas turbine engine with a recuperator was studied. Recuperated cycle has been employed to meet maximum fuel economy and ultra low emissions especially for military and vehicular engines. From thermodynamic stand point, it is known that recuperative cycle can contribute most to enhance thermal cycle efficiency for the Pressure ratios under 10 and of comparatively low turbine inlet temperature. Efficiency of a simple cycle with a recuperator increases relatively about 30% than without one at effectiveness of 0.5. Pressure losses in the heat exchanger less than 5.2% is considered in the design process. A tubular type heat exchanger is selected for this particular engine because it can provide simple construction as well as structural sturdiness and excellent leak tightness.

  • PDF

Garnet-Orthopyroxene Geothermometer and Geological Applications (석류석-사방휘석 지질온도계와 지질학적 응용)

  • Lee, Han Yeang
    • Economic and Environmental Geology
    • /
    • v.21 no.1
    • /
    • pp.29-44
    • /
    • 1988
  • Equilibrium relations between garnet and orthopyroxene have been investigated by reversal experiments in the range of 20-45Kb and $975-1400^{\circ}C$ in the $FeO-MgO-Al_2O_3-SiO_2$(FMAS) system. A mixture of PbO with about 55 mol per cent $PbF_2$ was used as a flux and proved very effective. The Fe-Mg exchange reaction seems to have little or no compositional dependence at these conditions. Combination of the experimental results with the garnet mixing model of Ganguly and Saxena(1984) yields the following geothermometric expression for the common natural assemblages that can be represented essentially within the system $FeO-MgO-CaO-MnO-Al_2O_3-SiO_2$. $$T^{\circ}C=(1971+11.91P(Kb)+1510(X_{Ca}+X_{Mn})^{Gt}/(lnK_D+0.96)-273$$.

  • PDF

A Study On the Ejector Design Technique And Flow Characteristics (초음속 지상추진시험설비의 이젝터 설계 기법 및 유동 특성 연구)

  • Lee Yang-Ji;Cha Bong-Jun;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.54-63
    • /
    • 2006
  • Ejector system are used to transport a low momentum flow to the higher pressure flow by the momentum change between high and low momentum flows. This system is used to simulate the high altitude and Mach number condition over altitude 20 km and Mach 4 of the supersonic test facility. We applied the design and the performance analysis technique(EISIMP code) of the Ramjet Test Facility(RJTF) air system in JAXA to the ejector system of the ramjet test facility in KARI. After preliminary design of the ejector system, we performed a computational study using FLUENT and investigated shock structures and flow characteristics of the ejector system.

Polymer Electrolyte Membrane Fuel Cell (PEMFC) Modeling for High Efficiency Fuel Cell Balance of Plant (BOP) (연료전지용 고효율 주변장치 (BOP) 설계를 위한 고분자 전해질 연료전지 (PEMFC) 스택 모델링)

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Na, Jae-Hyeong;Kang, Hyun-Soo;Lee, Byoung-Kuk;Lee, Won-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.201-203
    • /
    • 2007
  • 본 논문에서는, 연료전지 시스템의 기계적 주변장치 (MBOP)와 전기적 주변장치 (EBOP)의 최적 설계를 위해서 PEMFC 스택을 전기화학반응을 기초로 모델링한다. 모델링을 위해 기본적인 PEMFC의 구조와 동작 원리를 설명한다. 연료전지의 이론적 최고 전압인 평형전위를 깁스 자유에너지와 네른스트 방정식으로 유도한다. 전류밀도에 따른 전압 손실인 활성화, 저항, 농도 분극현상을 표현하기 위해서 수식을 유도한다. 수소가 이온화되지 못하고 산소극으로 넘어가서 발생되는 연료손실 및 내부전류와 지속적인 정역반응인 교환전류도 모델링된다. 평형전압에서 각 분극을 뺀 실제 운전 전압을 시뮬레이션하고, 유량과 압력에 따른 출력 특성을 시뮬레이션 한다. 부하변동 시 출력특성을 시뮬레이터와 실험결과로 비교한다.

  • PDF

Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant (석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구)

  • Lee, Chan;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle power plant. The present study adopts the ASU of double-distillation column process, from which integration conditions with compressor such as the heat exchanger condition between air and nitrogen, the amount and the pressure of extracted air are defined and mathematically formulated. The performance variations of the compressor integrated with ASU are analyzed by combining streamline curvature method and pressure loss models, and the predicted results are compared with the performance test results of actual compressors to verify the prediction accuracy. Using the present performance prediction method, the effects of pinch-point temperature difference (PTD) in the heat exchanger, the amount and the pressure of extracted air on compressor performances are quantitatively examined. As the extraction air amount or the PTD is increased, the pressure ratio and the power consumption of compressor are increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure level while improving at lower pressure air extraction. Furthermore, through the characteristic curve between generalized inlet condition and efficiency of compressor, optimal integration condition is presented to maximize the compressor efficiency.

  • PDF

Preparation and Application of Pore-filled PVDF ion Exchange Membranes (Pore-filled PVDF 이온교환막의 제조 및 응용)

  • 변홍식;박병규;홍병표;여광수;윤무홍;강남주
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.108-116
    • /
    • 2004
  • In this study, the pore-filled ion-exchange membranes were prepared by using the asymmetric PVDF membrane as a nascent membrane. First, the solution of PVBCI having the chlorornethylate aryl ring of 80 percents and DABCO was made with the mixed solvent of THF and DU (8:2). These mixed solution was then, filled in the pores of PVDF membrane, and left for a day to complete the gelation. Finally the pore-filled anion-exchange membrane is obtained fallowed by the amination of the remaining chloromethyl groups with trimethylamine (TMA, 40 wt% in water) forming the positive ammonium ion sites. This 2 step procedure enabled us to produce the pore-filled membranes without change of size, and to control the properties of final membrane with various degree of cross-linking. The results of SEM and AFM showed the polyelectrolyte existed in the pores of nascent membrane as a certain configuration. From the investigation of the solvent affecting much to the permeability and rejection, it was found that the membranes using mixed solvent of THE and DMF (8:2) showed better performances than the membranes produced by THF only. The result of an investigation for the water permeability of the final membrane at low pressure (100 Kpa) showed a typical ultrafiltration membrane's permeability (8 ∼ 10 kg/$m^2$hr) and good values of rejection (55∼60 percent).

A Study on Thermal Performance of Plate Cooler for Cooling Medium Speed Engine Lubricant Oil (선박용 중속엔진 오일냉각용 판형쿨러의 전열성능에 관한 연구)

  • Park, Jae-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • Plate heat exchangers(PHE) have been commercialized since the 1920s. Since then, although the basic concept of PHEs has changed little, its design and construction have progressed significantly to accommodate higher temperatures, higher pressures, and large heat exchanging capacities. The development trend of PHEs is consistent with heat plate developments with better thermal efficiency, lower pressure drop, and good flow distribution. The purpose of this paper is to introduce the main development processes of a plate cooler for medium-speed engine lubricant oil cooling in vessels which is in line with the development trend of PHEs and to provide its thermal performance data that were found out during experimental tests. The plate cooler in this study cannot measure the wall temperatures directly due to its structural characteristics, so the heat transfer coefficients were calculated using the modified Wilson Plot method. The water-to-water tests were first conducted experimentally to figure out the characteristics of heat transfer coefficients and pressure drops on the water side and then the water-to-oil tests followed to obtain the heat transfer coefficients on the oil side. The test results showed that heat transfer coefficients and pressure drops on both water and oil side increased with flow rates, and it was also found that all the development targets of the plate cooler in this study were achieved successfully.

Effect of ZnCl2 Co-catalyst in the Synthesis of Dimethyl Carbonate from Ethylene Carbonate and Methanol by Using Base Catalysts (염기 촉매를 이용한 디메틸카보네이트 합성에서 ZnCl2 조촉매의 영향)

  • Kim, Dong-Woo;Park, Moon-Seok;Kim, Moon-Il;Park, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.217-222
    • /
    • 2012
  • The synthesis of dimethyl carbonate(DMC) is a promising reaction for the use of naturally abundant carbon dioxide. DMC has gained considerable interest owing to its versatile chemical reactivity and unique properties such as high oxygen content, low toxicity, and excellent biodegradability. In this study, the synthesis of DMC through the transesterification of ethylene carbonate(EC) with methanol was investigated by using ionic liquid and metal oxide catalysts. The screening test of different catalysts revealed that choline hydroxide ([Choline][OH]) and 1-n-butyl-3-methyl imidazolium hydroxide([BMIm][OH]) had better catalytic performance than metal salts catalysts such as MgO, ZnO and CaO. The effects of reaction parameters such as reaction temperature, MeOH/EC mole ratio, and carbon dioxide pressure on the reactivity of [Choline][OH] catalyst were discussed. High temperature and high MeOH/EC mole ratio were favorable for high conversion of EC. However, the yield of DMC showed a maximum when carbon dioxide pressure was 1.34 MPa, and then it decreased for higher carbon dioxide pressure. Zinc chloride($ZnCl_2$) was used as co-catalyst with the ionic liquid catalyst. The mixed catalyst showed a synergy effect on the EC conversion and DMC yield probably due to the acid-base properties of the catalysts.

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.