• Title/Summary/Keyword: 압력회복계수

Search Result 22, Processing Time 0.03 seconds

The improvement of Two-Dimensional Subsonic Diffuser Performance Using the Turbulent Wake Caused by Cylinder (실린더 후류를 이용한 2차원 디퓨저 성능개선)

  • Kim, Se-Il
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.614-618
    • /
    • 2014
  • 본 연구에서는 디퓨저의 압력회복을 높이기 위해 디퓨저 입구에 실린더를 설치하여 후류가 압력회복에 어떤 영향을 미치는지 알아보았다. 2D-Incomp-2.1-P 해석자를 이용하여 속도, 압력에 따른 유동가시화를 통해 내부유동을 분석하였고, 압력회복계수를 비교하여 디퓨저 입구에 설치된 실린더의 후류가 디퓨저 성능에 어떤 영향을 주는지 비교하였다. 그결과 실린더를 설치하였을 때 확대부에서의 박리영역이 더 작아졌고 압력회복계수가 더 높아졌다.

  • PDF

Flow Characteristics of Two Types of Overhung Compressor Volute for Automobile Turbocharger (자동차용 터보차저의 오버헝 압축기 볼류트의 두 형태에 대한 유동장 특성)

  • Tianjun, Zhou;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • The flow characteristics of two types of overhung compressor volutes for automobile turbochargers were analyzed numerically using commercial software. For obtaining high performance from a volute, it is necessary that the volute have a high pressure recovery coefficient and a low loss coefficient. We investigated the flow characteristics of two types of overhung compressor volutes with a fixed diffuser inlet angle of $24^{\circ}$ and a mass flow rate of 0.055 kg/s. The first type is a volute with one-arc cross section (type 1) and the second type is with three-arc cross section (type 2). Our results showed that between the two types of volutes, type 2 had the higher pressure recovery coefficient and the lower loss coefficient along the entire angular position.

Enhancement of the Performance a Centrifugal Compressor in an Automobile Turbocharger by Modifying the Circumferential Inlet Height of Volute (원주방향 볼류트 입구 높이를 수정한 자동차용 터보차저 원심압축기의 성능 향상)

  • Zhou, Tianjun;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • To enhance the performance of an automobile turbocharger compressor, the circumferential inlet heights of the volute were modified and the flow field for the combined region of the diffuser and volute was numerically investigated using commercial software. Basically, a well-designed volute should have a high pressure recovery coefficient and a low loss coefficient for the total pressure. In this study, two circular volutes with the same cross sectional shape and tongue angle, but circumferentially different volute inlet heights, were selected. One volute had the middle inlet in the cross-section at the circumferential angle of $90^{\circ}$ but gradually lower inlet heights for the angles between $90^{\circ}$ to $360^{\circ}$ with respect to the cross sectional center of the volute, while maintaining the same height between the tangential line connecting the lowest positions of the cross section and the line connecting the volute inlets in the circumferential direction (case 1 volute). The other volute has an inlet height that is 2 mm lower than in case 1 volute such that the tongue section has a tangential inlet (case 2 volute). The results showed that the case 2 volute had a higher total pressure ratio because of its higher pressure recovery coefficient and higher isentropic efficiency, resulting from the lower loss coefficient along the circumferential position than the case 1 volute.

Adiabatic wall temperature distribution on a plate as under-expanded ratio and impinging angle (과소팽창비와 경사각에 따른 평판에서의 단열벽면온도분포)

  • Sun Yu Man;Cho Hyung Hee;Hwang Ki Young;Bae Ju Chan;Lee Jang Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.113-118
    • /
    • 2004
  • Experiments are conducted to get basic information of under-expanded impinging jet in the near field. Experimental parameters are impinging angle and under-expanded ratio. As the under-expanded ratio increases, the maximum surface pressure decreases and the reducing effect of recovery factor increases. As the impinging angle decreases, the peak of surface pressure is displaced slightly from the geometric center of the plate to the upward region and the cooling region is expanded in the downward region, whereas it is contracted in the upward region.

  • PDF

A Numerical evaluation of Constant Head Injection Test (수치 모사를 이용한 정압주입시험)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1918-1923
    • /
    • 2009
  • 결정질 암반에서 지하수의 수리적 특성을 파악하기 위해 수행되고 있는 수리시험 방법은 정률법, 정압법, 순간주입(회복)법 등 세 가지로 구분할 수 있다. 본 연구에서 다루는 정압주입시험 (Constant Head Injection Test, CHIT)은 위의 정압법의 한 종류로 토목공학, 지질공학 분야에서 대상 구간의 투수계수 추정을 위해 널리 쓰이는 수리 시험이며, 이는 단일 패커나 이중패커를 이용하여 시험 구간을 격리하고, 격리된 구간에 일정한 압력으로 물을 주입하여 주입되는 물의 양을 파악함으로써, 시험 구간의 수리전도도(Hydraulic conductivity)를 산출하는 전통적인 수리시험이다. 본 연구에서는 수치실험을 통해 시험 구간 및 주입 압력의 크기 등 인위적인 요인에 의해 도출되는 투수계수가 어떻게 달라지는지에 대해 평가해 보았다. 일반적으로 단열 암반에서 수행한 정압주입시험의 해석에 있어 매질을 균질, 등방성 다공질이라는 가정으로 구간별 투수량계수를 산출하기 때문에, 다공성 매질의 지하수 유동을 모사하는 MODFLOW를 수치모사 코드로서 이용하였다. 시험구간의 크기 및 주입압력에 대한 민감도 분석 결과, 시험구간의 크기에 상관없이 수치모의에서 입력한 수리전도도 값에 비해 낮은 수리전도도 값이 산출되었으며, 주입 압력이 클수록 산출되는 수리전도도 값이 매질의 수리전도도 값과 차이가 났다. 민감도 분석 결과 현장수리시험에서 정압 주입시험에 의한 구간별 수리전도도 산출함에 있어 시험구간의 크기와 주입 압력 값에 대하여 고려해야 한다고 판단된다.

  • PDF

Numerical Analysis of the Static Pressure Recovery Characteristics in Conical Diffuser by Inserting a Strut (스트러트를 삽입한 원추형 디퓨져의 압력회복 특성)

  • Kim, Se-Hyun;Seo, Jong-Soo;Shim, Kyu-Jin;Yi, Chung-Seub;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1613-1618
    • /
    • 2004
  • Diffuser is an important fluid-mechanical equipment to convert kinetic energy into pressure energy. Many of the experimental and theoretical researches have been done in a diffuser but the understanding of energy transfer and detailed mechanism of energy dissipation is unclear. In this study, computations were performed using a numerical method with SIMPLE algorithm for conical diffuser with various diffuser angles and diffuser lengths. Also, we investigated the pressure recovery coefficient in conical diffuser by inserting strut. In this paper, we showed that the strut can cause a rising pressure recovery.

  • PDF

Shape Optimization of High Power Centrifugal Compressor Using Multi-Objective Optimal Method (다목적 최적화 기법을 이용한 고출력 원심압축기 형상 최적설계)

  • Kang, Hyun Su;Lee, Jeong Min;Kim, Youn Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.435-441
    • /
    • 2015
  • In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.

A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II) (플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF

Thrust Characteristics of Through-type Pintle Nozzle at Operating Altitudes Conditions (작동 고도에 따른 관통형 핀틀 노즐의 추력 특성 연구)

  • Jeong, Kiyeon;Hong, Ji-Seok;Heo, Junyoung;Sung, Hong-Gye;Yang, Juneseo;Ha, Dongsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • Numerical simulations have been performed to investigate thrust characteristics of a through-type pintle nozzle with or without flow separation at various operating altitudes. The low Reynolds number $k-{\varepsilon}$ with compressibility correction proposed by Sarkar are applied. The detail flow structures are observed and static pressures along nozzle wall are compared with experimental results. The flow separation in the pintle nozzle disappears and jet plume strongly expands as its operating altitude increases. To evaluate the thrust characteristics, the momentum term and pressure term of thrust are analyzed. Thrust and thrust coefficient at altitude 20 km are about 10% more than them at the ground 0km.

Performance Test and Aerodynamic Design on the High Pressure Ratio Centrifugal Compressor of a Turbocharger (과급기의 고압력비 원심압축기 공력설계 및 시험평가)

  • Kim, Hong-Won;Ryu, Seung-Hyup;Lee, Geun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.13-20
    • /
    • 2014
  • It is necessary to design a compressor with high pressure ratio that satisfies the IMO(international maritime organization) NOx emission regulation for the marine diesel engine. Impeller was designed using the modified slip factor with the flow coefficient. The main purpose of this study is to investigate the sensitivity of the compressor performance by the vaned diffuser geometries. The first vaned diffuser type was based on a NACA airfoil, the second was channel diffuser, and the third was conformally transformated configuration of a NACA65(4A10)06 airfoil. The sensitivity of the performance was calculated using a commercial CFD program for three different diffuser geometries. The channel diffuser showed the wide range of operation and higher pressure characteristics, comparing with the others. This is attributed to the flow stability at diffuser. Combined with this results with impeller design, the optimized compressor was designed and verified by the test results.