• Title/Summary/Keyword: 압력하중

Search Result 532, Processing Time 0.018 seconds

COMPARISON FOR THE RETENTION OF CASTING CROWN AND CEMENT THICKNESS FOLLOWING VARIOUS CEMENTS (수종의 세멘트에 따른 주조금관의 유지력 및 세멘트 두께의 비교)

  • Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.37-46
    • /
    • 1994
  • The purpose of this study was to evaluate the effect of various cements on the retention of casting crown and the cement film thickness. To evaluate the retention of crown, thirty maxillary premolars were used and prepared to largely same dimension. According to the routine method, Non-precious metal crowns were made. The teeth and the metal crowns were divided into three groups and cemented under 5kg static pressure. Group I was composed of 10 teeth and 10 metal crowns and was cemented with zinc phohsphste cement. Group II was composed of 10 teeth and 10 metal crowns and was cemented with Panavia-EX cement. Group III was composed of 10 teeth and 10 metal crowns and was cemented with All-Bond & composite resin cement. After 5 days, the cemented specimens were mounted and the failure loads were measured by an Instron Universal Testing Machine. To evaluate the cement film thickness. 5 metal teeth and 5metal crowns from a prepared maxillary premolar were made. Two marks were flawed on the margin part of each surface at 4-surfaces of each specimen(one mark : crown, the other : metal tooth) and were measured the width with SEM photograph(80 sheets) before and after cementation(Panavia-EX, All-Bond cement, & ZPC) was made. Differences of the widths of marks between before and after were measured, and differences from 4-surfaces of a specimen cemented with a cement were measured and calculated. The results were as follows ; 1. There was a statistically significant difference between the failure loads of group III and the others(p<0.05). 2. There was a statistically significant difference between the cement film thickness of group III and the others(p<0.05).

  • PDF

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.