• Title/Summary/Keyword: 압력탱크

Search Result 269, Processing Time 0.031 seconds

A Study on the Integrated Control and Safety Management System for a LNG Storage Tank (LNG 저장탱크의 통합제어 안전관리 시스템에 관한 연구)

  • Kim Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.44-50
    • /
    • 2005
  • This paper presents integrated control and safety management system for a LNG storage tank. This system is for collecting and analyzing the temperature, pressure, and vibration signals in which are used to control and guarantee the system safety and leakage control from the inner gas tank. Based on the investigations of LNG tank related failures and accidents, we strongly recommend the modification and new development of current safety related measuring and control systems because the LNG tank is constructed bigger and bigger in recent years for the efficiency and safety increments. Thus, this paper presents newly developed integrated control and safety management system for a large LNG storage tank. This system provides the enhanced measuring and control systems, and new displacement based safety system, which may detect and control the deformation properties of tank structures. In addition, we recommend that the new integrated control and safety management system should be coupled by process integrated innovation system (PIIS) for an increased safety, efficiency, and productivity of LNG tanks.

  • PDF

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (I) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구 (I))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.54-61
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Generally for the propulsion system, which requires high thrust and is consisted of cryogenic propellant the pressurant is stored at high density and high pressure to reduce the weight of pressurant tanks, which are placed inside of cryogenic propellant tank. That is called cryogenic storage pressurization system. This study investigates the temperature variation of pressurant at the time when the pressurant is coming out of pressurant tank experimentally as well as numerically. Fluids used in this study are air and liquid oxygen as outer fluid and gaseous nitrogen and gaseous helium as pressurant respectively.

An Estimation of the Consequence Analysis for an Underground Installation of the LPG Storage Tanks (소형 LPG 저장탱크 매몰 설치에 대한 피해영향평가)

  • Song, Dong-Woo;Jun, Woon-Young;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.62-67
    • /
    • 2015
  • In this paper, the consequence analysis has been evaluated for the damage effects of the LPG storage tanks when they are installed on the ground or underground. They should be performed to identify measures to reduce risks for the LPG storage tanks which are more widely used. In order to conduct a damage effect evaluation of the LPG storage tanks installed underground, FDS was used to simulate the LPG storage tanks installed and housed within a facility. The maximum pressure of the storage facilities for the LPG storage tanks has been calculated from the FDS, and it's results are used as an input variable for Phast which is a commercial software for evaluating the damage effects. Getting results from the consequence analysis and computational simulations(diffusion range of LFL and UFL, jet fire or explosions) were quantitatively presented for the damage effects.

The verified results of arc phenomena when malfunctions occur inside 170kV GIS (170kV GIS의 내부고장 ARC 상태 시험결과)

  • Jeon, Sang-Dong;Kim, Do-Won;Lee, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.492-494
    • /
    • 2011
  • 전력설비 증가와 더불어 GIS 사용이 확대되고 있는 상황에서 GIS 내부고장 발생시 복구 지연으로 인한 사례가 지속 발생하고 있다. 이를 예방하기 위해 170kV GIS 고장구간 판정시스템용 압력센서를 개발하고 검증을 위해 실사용 GIS 2대를 이용하여 내아크 시험을 수행한 결과이다. 시험을 통해 고장시 GIS 탱크 내부의 압력, 온도, 압력파를 측정하였고 SF6 Gas 배관과 연결된 현장조작함(LCP)내 가스주입구에 설치한 압력센서의 동작유무을 검증하였다. 시험결과 유동해석(CFD) 등 시뮬레이션 예측보다 압력 및 온도 상승이 높게 측정되었고 제품에 대한 신뢰성과 확대적용 가능성을 확인할 수 있었다.

  • PDF

온도 변화에 따른 압력센서 배선의 피로수명 평가

  • 심재준;한근조;김태형;한동섭;이성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.90-90
    • /
    • 2004
  • 반도체 집적회로 제작 기술을 기반으로 하여 각종 물리량 감지를 위한 미세기계구조물과 각종 물리량의 전기신호로의 변화, 증폭, 보정을 위한 전자회로를 동시에 제작하여 하나의 칩 상에 집적화시킬 수 있는 MEMS 기술이 등장하게 됨에 따라 센서의 소형화, 경량화, 다기능화, 고성능화와 함께 비용을 최소화할 수 있는 장점을 가진 반도체 센서가 급격하게 개발되어 자동차 산업에 상용화되고 있다. 특히 반도체 압력센서는 엔진 제어용 MAP센서에서 가장 먼저 상품화되었으며, 현재 타이어압 센서 그리고 탱크 연료압력센서가 상품화되었고, 에어콘 압력 센서등도 실리콘 센서로 대체하기 위한 단계에와 있다.(중략)

  • PDF

Damage Evaluation for High Pressure Fuel Tank by Analysis of AE Parameters (고압가스 연료탱크의 손상평가를 위한 음향방출 변수의 분석)

  • Jee, Hyun-Sup;Lee, Jong-O;Ju, No-Hoe;Lee, Jong-Kyu;So, Cheal-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.36-40
    • /
    • 2011
  • This paper described analysis of acoustic emission parameter for the damage evaluation of type II vehicle fuel tank during fracture test. The observation of Kaiser effect, Felicity effect and creep effect is the means of damage evaluation method. It is possible to evaluate tank damage by the ratio of hit of over 60 dB and total hit. Damage mechanism of pressure tank can be estimated by analysis of average rise time, average amplitude.

Battle Damage Analysis of Aircraft Wing Fuel Tanks by Hydrodynamic Ram Effect (항공기 날개 연료탱크의 수압램 전투손상 해석연구)

  • Kim, Jong-Heon;Jeon, Seung-Mun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • Hydrodynamic ram of aircraft fuel tanks is one of main ballistic battle damages of an aircraft and has great importance to airframe survivability design. Basic concept, physics and research history of hydrodynamic ram are investigated. The penetration and internal detonation of a simple fuel tank and ICW(Intermediate Complexity Wing) are analyzed by computational method. Structural rupture and fluid burst are analytically realized using general coupling and coupling surface interaction. The results such as fluid pressure, tank stress and displacement are shown and future research chances are suggested based on the study.

Seismic Analysis of Liquid Storage Tanks Considering Shell Flexibility (벽면의 유연성을 고려한 액체저장탱크의 동적해석)

  • Lee, Chang Geun;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.21-29
    • /
    • 1987
  • In this paper the liquid sloshing effects in vertical storage tanks under earthquake loadings are studied. The study focuses on the investigation of the effect of the flexibility of the tank wall on the hydrodynamic forces exerted on it. The tank structure is modelled using finite elements. The motion of the liquid is expressed by the Laplace equation. The equation of motion of the fluid shell system is formulated including the coupling effect between the shell motion and the sloshing motion. A procedure is developed to obtain the natural frequencies and the mode shapes of the sloshing motion as well as the shell vibration. Dynamic analyses have been carried out for several tanks with different dynamic characteristics utilizing the time history method as well as the response spectra method.

  • PDF

A Conceptual Design of the Dual-Mode Propulsion System for a Geosynchronous Communication Satellite (이중모드시스템을 적용한 정지궤도 통신위성 추진시스템 개념설계)

  • 박응식;김정수;양군호;김중표
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.98-106
    • /
    • 2000
  • A conceptual design of propulsion system for a geosynchronous communication satellite with 12 years design life is presented in this paper. Propellant mass budget for the design life is calculated using total velocity increment ($\Delta$V) flowed-down from mission requirement analysis. Sizes of the fuel and oxidizer tank are derived based on the calculated propellant mass budget, and mass of the pressurant as well as the size and Pressure of pressurant tank are calculated too. Thruster positioning, number of rocket engines, and position of tank are determined through trade-off study with Structure & Mechanical Subsystem. Propulsion system configuration and its schematics are presented finally.

  • PDF

Design of the Condenser and Automation of a Solar Powered Water Pump (태양열 물펌프의 운전 자동화 설계)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;Lee Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.3
    • /
    • pp.141-154
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which the electrical power is not available. The average so]ar radiation energy is 3.488 kWh/($m^2{\cdot}day$) in Korea. In this study, the automatic control logic and system of the water pump driven by the radiation energy were studied, designed, assembled, tested and analyzed for realizing the solar powered water pump. The experimental system was operated automatically and the cycle was continued. The average quantity of the water pumped per cycle was about 5,320 cc. The cycle time was about 4.9 minutes. The thermal efficiency of the system was about $0.030\%$. The pressure level of the n-pentane vapour in flash tank was 150$\%$450 hPa(gauge) which was set by the computer program for the control of the vapour supply. The pressure in the condenser and air tank during cycles was maintained as about 600 hPa and 1,200 hPa respectively. The water could be pumped by the amount of 128kg/($m^2{\cdot}day$) with the efficiency of $0.1\%$ and the pumping head of 10 m for the average solar energy in Korea.

  • PDF