• Title/Summary/Keyword: 압력탱크

Search Result 269, Processing Time 0.023 seconds

A basic study on explosion pressure of hydrogen tank for hydrogen fueled vehicles in road tunnels (도로터널에서 수소 연료차 수소탱크 폭발시 폭발압력에 대한 기초적 연구)

  • Ryu, Ji-Oh;Ahn, Sang-Ho;Lee, Hu-Yeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.517-534
    • /
    • 2021
  • Hydrogen fuel is emerging as an new energy source to replace fossil fuels in that it can solve environmental pollution problems and reduce energy imbalance and cost. Since hydrogen is eco-friendly but highly explosive, there is a high concern about fire and explosion accidents of hydrogen fueled vehicles. In particular, in semi-enclosed spaces such as tunnels, the risk is predicted to increase. Therefore, this study was conducted on the applicability of the equivalent TNT model and the numerical analysis method to evaluate the hydrogen explosion pressure in the tunnel. In comparison and review of the explosion pressure of 6 equivalent TNT models and Weyandt's experimental results, the Henrych equation was found to be the closest with a deviation of 13.6%. As a result of examining the effect of hydrogen tank capacity (52, 72, 156 L) and tunnel cross-section (40.5, 54, 72, 95 m2) on the explosion pressure using numerical analysis, the explosion pressure wave in the tunnel initially it propagates in a hemispherical shape as in open space. Furthermore, when it passes the certain distance it is transformed a plane wave and propagates at a very gradual decay rate. The Henrych equation agrees well with the numerical analysis results in the section where the explosion pressure is rapidly decreasing, but it is significantly underestimated after the explosion pressure wave is transformed into a plane wave. In case of same hydrogen tank capacity, an explosion pressure decreases as the tunnel cross-sectional area increases, and in case of the same cross-sectional area, the explosion pressure increases by about 2.5 times if the hydrogen tank capacity increases from 52 L to 156 L. As a result of the evaluation of the limiting distance affecting the human body, when a 52 L hydrogen tank explodes, the limiting distance to death was estimated to be about 3 m, and the limiting distance to serious injury was estimated to be 28.5~35.8 m.

A study of efficiency for digital pressure switch in fire pump system (전자식기동용압력스위치의 효용성 연구)

  • Lee, Taick-Koo;Tak, Il-Cheon;Rie, Dong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.207-213
    • /
    • 2011
  • 소방펌프는 소방설비 시스템에서 가장 중요한 설비임에도 불구하고 그동안 펌프의 기동 정지를 압력탱크(챔버)방식으로만 할 수 밖에 없었기 때문에 셋팅 및 유지관리 등에 많은 어려움이 있었으나 전자식기동용압력스위치를 이용한 새로운 펌프기동장치가 도입이 되었기에 이에 대한 특징과 장단점 등을 분석, 검토하였다.

  • PDF

Structure Analysis and Design Optimization of Stiffeners in LNG Tanks (LNG 저장탱크 보강재의 구조해석 및 최적설계)

  • Jin, Cheng-Zhu;Jin, Kyo-Kook;Ha, Sung-Kyu;Seo, Heung-Seok;Yoon, Ihn-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.325-330
    • /
    • 2012
  • This paper describes the structural analysis and optimization of stiffeners used in inner tanks for liquid natural gas (LNG) storage, so that the costs can be minimized while the critical buckling load of the inner tank still exceeds the external pressure exerted by the perlite. The original calculation of perlite pressure applied to the inner tank was based on Zick's code, which led to the overestimation of the external pressure, and consequently, an oversized stiffener. In this study, the effects of the material properties of perlite on the external pressure distribution are scrutinized, and the optimum dimensions of a single stiffener are finally obtained through a series of parametric studies. A 15% decrease in the cost of the stiffener compared with the original design is achieved.

Evaluation of Creep-Fatigue Integrity for High Temperature Pressure Vessel in a Sodium Test Loop (소듐 시험루프 내 고온 압력용기의 크리프-피로 건전성 평가)

  • Lee, Hyeong-Yeon;Lee, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.831-836
    • /
    • 2014
  • In this study, high temperature integrity evaluation on a pressure vessel of the expansion tank operating at elevated temperature of $510^{\circ}C$ in the sodium test facility of the SEFLA(Sodium Thermal-hydraulic Experiment Loop for Finned-tube Sodium-to-Air heat exchanger) to be constructed at KAERI has been performed. Evaluations of creep-fatigue damage based on a full 3D finite element analyses were conducted for the expansion tank according to the recent elevated temperature design codes of ASME Section III Subsection NH and French RCC-MRx. It was shown that the expansion tank maintains its integrity under the intended creep-fatigue loads. Quantitative code comparisons were conducted for the pressure vessel of austenitic stainless steel 316L.

A Study on the Performance of COMS CPS during LEOP (천리안 위성의 LEOP기간 동안의 추진계 성능 연구)

  • Chae, Jong-Won;Han, Cho-Young;Yu, Myoung-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.258-263
    • /
    • 2012
  • In this paper the Chemical Propulsion Subsystem of COMS is briefly explained and some telemetries acquired by a series operations of CPS during the Launch and Early Operation Phase of COMS are presented. The pressure and temperature of pressurant tank telemetries are compared with the results of the developed computer program. The changes in pressure are due to the two major phases. The first one is the initialization phases of CPS composed of the venting phase to vent the helium gas in the pipe network from the downstream of the propellant tanks to the thrusters for safety, the priming phase to fill the vented pipe network with oxidizer and fuel respectively and then the pressurization phase to pressurize the ullage of propellant tank to regulated pressure. And the other is the apogee engine firings in which COMS CPS is in the orbit raising phase to use helium as a pressurant to keep the pressure of propellant tank as the liquid apogee engine get fired until COMS reached to the target orbit. This program can be applicable to prepare basis design data of the next Geostationary Satellite CPS.

Investigation on Design Requirements of Feed Water Drain and Hydrogen Vent Systems for the Prototype Generation IV Sodium Cooled Fast Reactor (소듐냉각고속로 원형로 소듐-물 반응 압력완화계통의 급수배출 및 수소방출 설계 요건 연구)

  • Park, Sun Hee;Ye, Huee-Youl;Lee, Tae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.170-179
    • /
    • 2017
  • We investigated design requirements of feed water drain and hydrogen vent systems for the sodium-water reaction pressure relief system (SWRPRS) of the prototype generation IV sodium cooled fast reactor (PGSFR). We evaluated the areas of the gas vent pipe of the water dump tank and the length of the water drain pipe of the steam generator to rapid drain of the water steam inside the steam generator for the normal and refueling operations, respectively. We also calculated the diameter of the gas vent pipe of the sodium dump tank which met its design pressure.

A Numerical Study on the Prediction of Sloshing Impact Pressure (Sloshing 충격압력의 추정을 위한 수치기법에 관한 연구)

  • Y.H. Kim;Y.J. Park;H.R. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.61-73
    • /
    • 1993
  • In the present study, sloshing problem is analyzed by the application of Finite Difference Method. SOLA-SURF scheme is applied to the analysis of fluid motion considering free surface. Especially, the concept of impact buffer zone is introduced for the prediction of more realistic impact pressure on tank. Numerical computation is carried out for the typical three models, and the computed results show good agreement with experimental data. The computation is also performed for 300,000 tons VLCC as a real-ship application. From the present study, it is proved that this numerical technique is quite practical to the prediction of sloshing impact pressure.

  • PDF

A Study on Thermal Performance Evaluation Procedures of LNG Fuel Tank (LNG 연료탱크의 단열성능 평가 절차에 관한 연구)

  • Cho, Sang-Hoon;Sim, Myung-Ji;Jung, Young-Jun;Kim, Ik-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.45-52
    • /
    • 2018
  • As guidelines for exhaust gases of ship are reinforced by the International Maritime Organization, the necessity for LNG fuelled ship is emerging. The relevant research is actively progressing to develop technologies and promote commercialization. When the residual quantity of LNG fuel tank is less than 70% by consuming fuel during operation, sloshing should be considered. We applied the Type C LNG fuel tank because medium sized LNG fuelled ships are difficult to equip with re-liquefaction system. Structural integrity and thermal performance are very important, especially in LNG fuel tanks that apply to LNG fuelled ship. Through this study, we proposed evaluation procedure of thermal performance for the Type C LNG tank, and verified the validity and effectiveness of BOR(Boil-Off Rate) test Procedure by comparing and analyzing changes in temperature, pressure, BOG(Boil-Off Gas).

정지궤도 통신위성의 추진시스템 개념설계 연구

  • Park, Eung-Sik;Park, Bong-Kyu;Kim, Jeong-Soo
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.55-64
    • /
    • 2002
  • A conceptual design of propulsion system for a geosynchronous communication satellite with 12 years design life is presented in this paper. Propellant mass budget for the design life is calculated using total velocity increment (ΔV) flowed-down from mission requirement analysis. Sizes of the fuel and oxidizer tank are derived based on the calculated propellant mass budget, and mass of the pressurant as well as the size and pressure of pressurant tank are calculated too. Thruster positioning, number of rocket engines, and position of tank are determined through Trade-Off Study with Structure & Mechanical Subsystem. Propulsion system configuration and its schematics are presented finally.

  • PDF