• Title/Summary/Keyword: 압력손실인자

Search Result 62, Processing Time 0.019 seconds

Experimental Study on the Airside Performance of Aluminum Heat Exchangers Having Slim Louver Fins (슬림형 루버 핀이 장착된 알루미늄 열교환기의 공기측 전열 성능에 대한 실험적 연구)

  • Kim, Nae-Hyun;Cho, Honggi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.587-595
    • /
    • 2017
  • Recent trends in slim air conditioners require heat exchangers of reduced flow depth. In this study, slim louver fin geometry was obtained using predictive correlations. The deduced geometry yielded 10 mm flow depth, 0.9 mm louver pitch, and $35^{\circ}$ louver angle. Samples were made and tests were conducted. The new slim sample yielded 36% higher j factor and 2.3% higher f factor compared with those of the standard sample. This implies that 26% reduction of heat exchanger volume was possible by reducing the flow depth. In addition, the $j/f^{1/3}$ of the slim sample was 55% larger than that of the standard sample. Furthermore, the results are compared with predictions made using existing correlations.

Spacer Grid Effects on Turbulent Flow in Rod Bundles (지지격자가 봉다발 난류유동에 미치는 영향)

  • Yang, Sun-Kyu;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.56-71
    • /
    • 1996
  • The local hydrulic characteristics in subchannels of 5$\times$5 nuclear fuel bundles with spacer grids were measured at upstream and downstream of the spacer grid for the investigation of the spacer grid effects on turbulent flow structure by using an LDV(Laser Doppler Velocimeter). The measured parameters are axial velocity and turbulent intensity, skewness factor, and flatness factor. Pressure drops were also measured to evaluate the loss coefficient for the spacer grid and the friction factor for rod bundles. From these data, it was found that the turbulent mixing and forced mixing occur up to $x/D^h=10$ and 20 from the spacer grid, respectively. The turbulence decay behind spacer grid behaves in the similar decay rate as turbulent flow through mesh grids or screens. Mixing factors useful in subchannel analysis code were correlated from the data and show the highest value near spacer grid and then have a stable values.

  • PDF

The Effect of Anti-microbial and the Inhibitory Effect of Biofilm Formation and Inflammatory Factors Production of Perillae semen Supercritical Fluid Extracts (초임계 자소자추출물의 항균효과와 바이오필름, 염증매개인자 생성 억제 효능)

  • Lee, Kwang Won;Park, Shinsung;Park, Su In;Shin, Moon Sam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.615-624
    • /
    • 2022
  • In this study, we assessed anti-oxidant activity, anti-microbial, inhibition of biofilm formation and inflammatory factors(nitric oxide, interleukin-6, interleukin-8) inhibitory effect of Perillae semen hydrothermal extract(PSW) and three kinds of Perillae semen supercritical fluid extract(PSSs) extracted by controlling temperature with no variation of pressure. Compared with PSW, PSSs had significantly lower minimal inhibitory concentrations(MICs) against Staphylococcus aureus(S. aureus) and the ability of PSSs to inhibit formation of biofilm was also superior. PSSs reduce the production of inflammatory mediator and inflammatory cytokines significantly compared to PSW. We suggest, therefore, Perillae semen supercritical fluid 45℃ extract which showed the best anti-microbial, inhibition of biofilm formation, and inhibition of inflammatory factors production among the supercritical fluid extracts could be used for protecting patients with atopic dermatitis from pruritus and transepidermal water loss as a functional ingredient from nature.

Air-side Heat Transfer and Pressure Drop of a Fin-and-Tube Heat Exchanger Under Low Temperature Condition (저온 조건에서 핀-관 열교환기의 공기측 열전달 및 압력손실)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.15-20
    • /
    • 2017
  • Currently, residential air conditioners operate as a heat pump during winter. In this case, the outdoor heat exchanger acts as an evaporator obtaining heat from cold air. On the other hand, it acts as a condenser during summer transferring heat to hot air. The outdoor temperature changes significantly from high to low. Generally, the air-side j and f factors are obtained at a standard outdoor temperature. Therefore, the applicability of the j and f factors under different outdoor conditions needs to be checked. In this study, tests were conducted for a two-row louver finned heat exchanger changing the outdoor temperature to subzero. The effects of the tube-side brine flow rate were also checked. The results showed that air-side j and f factors were essentially constant and independent of the outdoor temperature, suggesting that an extension of j and f factors obtained under standard conditions to a low outdoor temperature is acceptable. All j and f factors agreed within 9% and 3%, respectively. Tests were also conducted by changing the coolant flow rate. Both the j and f factors did not change according to the flow rate, suggesting that the tube-side heat transfer correlation is acceptable.

Engineering Approach to Crop Production in Space (우주에서 작물 생산을 위한 공학적 접근)

  • Kim Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.218-231
    • /
    • 2005
  • This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

The Effect of Pressure and Hose Length on the Travelling Distance of Particles in Power Sprayer (토출압력(吐出壓力) 및 호오스길이가 도달성(到達性)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kwon, Soon Hong;Choi, Kyu Hong
    • Journal of Biosystems Engineering
    • /
    • v.7 no.2
    • /
    • pp.30-35
    • /
    • 1983
  • To investigate the factors affecting the transportability of spray droplets, the maximum distance, the effective distance, the ratio of even distribution, and the diameters of particles were measured in accordance with the different pressure levels of power sprayer using 3 hole swath type nozzle, and the results are summerized as follows; 1. The distance of the most dense point from the nozzle was shortened by 0.5 meter with the 100-meter-long hose. The maximum reaching distances were reduced by 1.5 and 1.0 meters for the 13m/m and the 8.5 m/m hoses respectively, and the effective distance were reduced by 0.5 meter for both cases. 2. The effective distance can not be extended beyond 14 meters even if the length of hose is minimized at the rated pump pressure 28 kg/$cm^2$, it was 1 meter longer for 13m/m hose compared to the 8.5m/m one. 3. In case of 13m/m hose, the most dense point can be extended further by 0.5 meter increasing the pump pressure by 8 kg/$cm^2$, and the maximum distance and effective distance were increased by 2.0 and 0.5 meters respectively. There was no significant effect of pressure changes on the transportability in case of 8.5m/m hose. 4. Both the reduction of hose length and the increase of pump pressure influenced in large extent to the atomization effect of droplets. It was noticed that the diameter of droplet is related to the pump pressure and inside diameter of hose. 5. The pressure drop in 100-meter-long and l3m/m hose was 5~7kg/$cm^2$ at the pump pressure range of 25~33kg/$cm^2$, and it is an equivalent of 2% per 10 meter length of hose.

  • PDF

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I))

  • 김형문;이상길;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In the present paper an attempt has been made to simulate the secondary injection-primary flow interaction in the conical rocket nozzle and to derive the performance of secondary injection thrust vector control(SITVC) system. Complex three-dimensional flowfield induced by the secondary injection is numerically analyzed by solving unsteady three-dimensional Euler equation with Beam and Warming's implicit approximate factorization method. Emphasized in the present study is the effect of secondary injection such as secondary mass flow rates and the momentum of secondary/primary nozzle flow mass rates upon the gross system performance parameters such as thrust ratio, specific impulse ratio and deflection angle. The results obtained in terms of system performance parameters show that lower secondary mass flow rate is advantageous for to reduce secondary specific impulse loss. It is further found that the nozzle with secondary jet injected downstream and interacting with fast primary flow is preferable for efficient and stable SITVC over the wide range of use with the penalty of side specific impulse loss.

  • PDF

Numerical Study on the Phenomenon of Spontaneous Ignition of Coal Stockpile (저탄장 자연발화 현상의 수치해석적 연구)

  • Kim, Chul-Jin;Park, I-Sun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.721-727
    • /
    • 2010
  • The spontaneous ignition of coal stockpile causes serious safety and economic problems. Such spontaneous ignition occurs in coal stockpile when the rate of heat released by the oxidation of coal is greater than the rate of heat lost to the surroundings. In this study, a two-dimensional unsteady model is adopted for studying spontaneous ignition and the numerical results are compared with experimental results. The numerical results are in a good agreement with the experimental ones. Depending on the porosity, the internal maximum temperature, pressure, and oxygen mass fraction during spontaneous ignition are investigated. On the basis of the numerical results, the transient temperature variations for several shapes of coal stockpiles are analyzed. Further, the physical mechanisms of hot-spot formation and spontaneous ignition are analyzed.

Prediction of the Efficiency of Factors Affecting Pressure Drop in a Pulse Air Jet-type Bag Filter (충격기류식 여과집진장치에서 압력손실에 영향을 주는 인자의 효율예측)

  • Suh, Jeong-Min;Ryu, Jae-Yong;Lim, Woo-Taik;Jung, Moon-Sub;Park, Jeong-Ho;Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.437-446
    • /
    • 2010
  • The pressure drop through pulse air jet-type bag filter is one of the most important factors on the operating cost of bagfilter houses. In this study, the pilot-scale pulse air jet-type bag filter with about 6 m2 filtration area was designed and tested for investigating the effects of the four operating conditions on the total pressure drop, using the coke dust collected from a steel mill factory. When the face velocity is higher than 2 m/min, it is not applicable to on-spot due to the increase of power expenses resulting from a high-pressure drop, and thus, 1.5 m/min is considered to be reasonable. The regression analysis results show that the degree of effects of independent parameters is a order of face velocity > concentration > time > pressure. The results of SPSS answer tree analysis also reveal that the operation time affects the pressure drop greatly in case of 1 m/min of face velocity, while the inlet concentration affects the pressure drop in case of face velocity more than 1.5 m/min.

Geotechnical Characteristics of Prefabricated Vertical Drain System for Contaminated Soil Remediation (오염토양 복원을 위한 연직배수시스템의 지반공학적 특성)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The quantity of noxious wastes generated by the growth in industrialization and population in all over the world and its potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. Incorporated technique with PVDs have been used for dewatering from fine-grained soils for the purpose of ground improvement by means of soil flushing and soil vapor extraction systems. This paper is to evaluate several key parameters that affected to the performance of the PVDs specifically with regard to: well resistance of PVD, zone of influence, and smear effects. In the feasibility of contaminant remediation was evaluated in pilot-scale laboratory experiments. Well resistance is affected on the vertical discharge capacity of the PVDs under the various vacuum pressures. The discharge capacity increases consistently in areal extents with higher applied vacuum up to a limiting vacuum pressure. The head values for each piezometer at different vacuum pressures show that the largest head loss occurs within 14 cm of the PVD. Air flow rates and head losses were measured for the PVD placed in the model test box and the gas permeability of the silty soils was calculated. Increasing the equivalent diameter results in a decrease in the calculated gas permeability. It is concluded that the gas permeability determined over the 1,500 to 2,000 $cm^3/s$ flow rates are the most accurate values which yields gas permeability of about 3.152 Darcy.

  • PDF