• Title/Summary/Keyword: 압력변동

Search Result 428, Processing Time 0.033 seconds

Development of the Design Technology for the Pressurization Equipments of High Speed Train (고속전철용 압력완화장치 설계기술 개발)

  • Yeom, Han-Gil;Park, Seong-Je;Go, Deuk-Yong
    • 연구논문집
    • /
    • s.28
    • /
    • pp.21-37
    • /
    • 1998
  • Atmospheric pressure in a tunnel rises in proportion to the square of train’s speed as it enters a tunnel. This pressure difference propagates into the train and cause aural discomfort to the passengers. In order to alleviate the aural discomfort of them. a new ventilation system has been designed and tested. This system controls the charged and discharged by flow rate by detecting the air pressure generated outside and inside of the train. Test to confirm the fundamental performance of the system was carried out. Consequently, this system was found to be able to alleviate the aural discomfort effectively. Application of the system to TGV-K running in the speed range of 350km/h is considered to have good propospect.

  • PDF

Assessment of the Pressure Transient Inside the Passenger Cabin of High-speed Train Using Computational Fluid Dynamics (전산유체역학을 이용한 고속철도차량 객실 내 압력변동 평가)

  • Kwon, Hyeok-Bin;Nam, Sung-Won;Kwak, Jong-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • The pressure transient inside the passenger cabin of high-speed train has been assessed using computational fluid dynamics (CFD) based on the axi-symmetric Navier-Stokes equation. The pressure change inside a train have been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train. The numerical results show that the pressure change inside the new Korean high-seed train passing through a tunnel of Seoul-Busan high-speed line at the speed of 330km/h satisfied well the Korean regulation for pressure change inside a passenger cabin if the train is satisfying the train specification for airtightness required by the regulation.

The Effect of Propeller Skew and Rake on the Fluctuating Pressure (프로펠러 스큐 및 레이크가 변동압력에 미치는 영향)

  • G.I.Choi
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.364-371
    • /
    • 1997
  • 프로펠러 캐비테이션은 선체진동 및 수중소음에 악영향을 끼치는 주요한 원인중의 하나로 생각되어왔다. 그러나 근래 선박의 고속화와 프로펠러 하중의 증가로 캐비테이션이 전혀 없는 프로펠러의 설계개념 적용은 사실상 불가능하다. 고스큐 프로펠러는 기존의 프로펠러와 비교하여 수중소음과 저주파 압력 펄스를 약하게 하는데 유리한 것으로 인식되고 있다. 변동압력에 대하여 프로펠러 스큐와 레이크의 영향을 조사하기 위하여 체계적인 실험을 캐비테이션 터널에서 수행하였으며 본 논문에서는 여러 가지 스큐와 레이크 분포를 갖는 모형 프로펠러에 대한 캐비테이션 관찰시험과 변동압력 계측결과에 대하여 논의하고 토론하였다. 연구 결과 고스큐는 균일류 및 불균일류에서 공히 변동압력 경감에 효ㄱ과가 있음이 확인되었는데 이는 아마도 날개에서의 캐비테이션 안정성에 의한 것으로 예측된다. 그러나 레이크는 날개에서의 캐비티 크기나 거동에 큰 영향을 주지 못하였으며, 변동압력이 또한 거의 같은 수준으로 나타나는 결과를 가져왔다.

  • PDF

배수관내의 공기압력 변동의 완화방법

  • 유건석;이용화
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.32 no.10
    • /
    • pp.27-30
    • /
    • 2003
  • 배수관내의 공기의 압력변동을 완화시키는 방법의 하나인 통기밸브 등에 대해 소개한다. 배수설비의 목적은 위생기구로부터의 오배수를 건물 밖으로 신속하게 배출함과 동시에 배수관내에 악취성분을 포함하고 있는 오염된 공기가 실내로 침입하여 실내공기가 오염되는 것을 방지하기 위한 역할도 한다. 하수가스의 침입을 방지하기 위해 각종 형상의 배수트랩을 설치하는데, 여러 가지 원인에 의해 트랩내의 봉수는 파괴되기도 한다. 봉수파괴 원인 중에서도 가장 큰 영 향을 미치는 사이 폰 작용에 의한 봉수 파괴는 배수 수직관 및 수평주관내의 공기의 압력변동이 원인(유도사이펀 현상)이 되어 발생하거나 배수자신(자기사이펀 현상)에 의해 발생한다. 배수관내의 압력은 배수부하가 발생한 경우에는 그 배수에 의한 공기의 이동 등에 의해 변동하며, 배수가 없어도 배수관 접속부의 기압변동이나 상승기류에 의해 변동된다.(중략)

  • PDF

An experimental study for prediction of the fluctuating pressure induced by a cavitating propeller (캐비티가 발생한 프로펠러의 변동압력 추정을 위한 실험적 연구)

  • K.S. Kim;I.S. Moon;K.Y. Kim;I.H. Song;J.T. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.47-52
    • /
    • 1999
  • The influence of propeller revolution on measurement of fluctuating pressure is almost minimized in the KRISO cavitation tunnel and the measurement accuracy of fluctuating pressure acting on a flat plate due to a cavitating propeller is improved. The measurement data for Sydney Excess propeller is compared with the measurement results of other research institutes loading to the conclusion that KRISO data is so stable and reasonable. The fluctuating pressure data measured on a model ship and the prototype ship is compared with the data measured on the flat plate. The solid boundary factor, derived from a calculation based on a lifting surface theory, is applied to predict full scale pressure level from the experimental data on the flat plate, showing quite reasonable agreement with full scale data.

  • PDF

A Study on the Window Glass Pressure for High-speed Train (고속철도차량의 유리창 압력에 관한 연구)

  • Kwon, Hyeok-Bin;Chang, Dae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.371-375
    • /
    • 2010
  • In order to decide the strength requirement of the window glass for the high-speed train, the pressure change during the passage of the EMU type high-speed train has been numerically simulated. Based on the calculation results, the pressure difference between the inner and outer pressure of the cabin has been calculated to yield the amount of load acting on the window glass of the cabin. To simulate the pressure field generated by the high-speed train passing through the tunnel, computational fluid dynamics based on the axi-symmetric Navier-Stokes equation has been employed. The pressure change inside a train has been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train.

A Study on the Combustion Characteristics in an Aero-Valved Pulsating Combustion System (空氣밸브型 脈動燃燒시스템의 燃燒特性에 관한 硏究)

  • 임광렬;오상헌;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.328-337
    • /
    • 1988
  • Experimental study was carried out to investigate the combustion characteristics of the hero-valved pulsating combustor with maximum operating capacity of 56kW. The pressure, the ion current, and the temperature fluctuations were simultaneously measured and statistically analyzed to identify the combustion process, the reignition and the mixing process of the reactants. It was found that the pulse combustion process was intermittent and the reignition of the reactants was caused by a direct contact and rapid mixing with the previous hot residuals. The analysis of the measured data indicated that the combustion process consisted of there stages in the combustion chamber; the preheating of the reactants in the vicinity of the air inlet pipe, the explosive combustion in the central region and the afterburning in the vicinity of the tailpipe. Wile the inflow of the fresh air occurred during the negative period of the pressure in the mechanical valved system, it occurred during the rising period of the pressure in the aero-valved system.

A measurement of the pressure fluctuation by using the condenser microphone (콘덴서 마이크로폰을 이용한 압력변동성분의 측정)

  • 윤재건
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.18-23
    • /
    • 1989
  • 본 기고에서는 필자의 경험을 바탕으로 콘덴서 마이크로폰(condenser microphone)을 압력측정 프로우브에 직접 연결하여 압력변동성분을 측정하는 방법을 소개하고, 이 방법의 적용예와 문제점을 검토하고자 한다.

  • PDF

Low-Frequency Pressure Fluctuations in an External-Loop Airlift Reactor (외부순환 공기부양반응기에서 낮은 주파수의 압력 변동)

  • Choi, Keun Ho
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.665-674
    • /
    • 2020
  • Low-frequency pressure fluctuations in an external-loop airlift reactor were investigated. Low-frequency pressure fluctuations could be measured by shooting videos about liquid levels in the four piezometric tubes which were installed at the lower and upper parts of the riser and downcomer using a cellular phone. The periodic characteristics of pressure fluctuations were proved by the calculation of their auto-correlation function and cross-correlation function. Even if the riser superficial gas velocity was constant, the riser and downcomer gas holdups as well as wall pressures were periodically changed due to the inertia of circulating liquid. In general, the intensity of pressure fluctuations increased with an increase in the gas velocity. When the unaerated liquid height was 0.04 m, the maximum period of pressure fluctuations was found at the specific gas velocity (0.14 ms-1). It was because the maximum inertia of circulating liquid resulted from a reduction in the increasing rate of the liquid circulation velocity and a decrease in the volume of the effectively circulating liquid with an increase in the gas velocity.

An Experimental Study on the Pressure Change in the Type of Elevator Hoistways (엘리베이터 승강로 형식별 압력변동에 관한 실험 연구)

  • Kim, Hak-Joong;Kim, Boem-Gyu;Park, Yong-Hwan;Lim, Chae-Hyun
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.139-144
    • /
    • 2010
  • Recently, evacuation safety of building resident become the major concern, as the building has been higher and more complicated. Many high-rise multi use buildings are under construction in Korea. Required evacuation time using stairway is longer in high-rise buildings, moreover it is impossible for the disabled to evacuate by using stairway. For this reason the study on the effectiveness of using elevator for evacuation is progressing. This study shows the pressure change in various types of hoistway when elevator is moving. Experiments were performed in 4 different types of hoistway, and showed big difference in pressure change between the type of hoistway. The pressure change in single hoistway that have one car is bigger than that in multi hoistway that have multi cars. The results of this study can be used for the study of elevator piston effect as basic data.