• Title/Summary/Keyword: 압력방정식

Search Result 537, Processing Time 0.025 seconds

Numerical Study for Kerosene/LOx Supercritical Mixing Characteristics of Swirl Injector (동축와류형 분사기의 케로신/액체산소 초임계 혼합특성 수치적 연구)

  • Heo, Jun-Young;Kim, Kuk-Jin;Sung, Hong-Gye;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.103-108
    • /
    • 2011
  • The turbulent mixing of a kerosene/liquid oxygen coaxial swirl injector under supercritical pressures have been numerically investigated. Kerosene surrogate models are proposed for the kerosene thermodynamic properties. Turbulent numerical model is based on LES(Large Eddy Simulation) with real-fluid transport and thermodynamics over the entire pressure range; Soave modification of Redlich-Kwong equation of state, Chung's model for viscosity/conductivity, and Fuller's theorem for diffusivity to take account Takahashi's compressible effect. The effect of operating pressure on thermodynamic properties and mixing dynamics inside an injector and a combustion chamber are investigated. Power spectral densities of pressure fluctuations in the injector under various chamber pressure are analyzed.

  • PDF

The Electromotive Force and Thermodynamic Properties of the Cell at High Pressure (고압하에서의 전지의 기전력과 열역학적 성질)

  • Jee Jong-Gi;Jung Jong-Jae;Hwang Jung-Ui
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.320-328
    • /
    • 1974
  • It is unable to derive the standard emf ($E^{\circ}$) of the cell at high pressure from the conventional method. However, when the concept of the complete equilibrium constant($K{\circ})$) is available to the conventional Nernst equation, it is possible to get the standard emf of the cell at high pressure(complete Nernst equation). Moreover, the other thermodynamic properties, such as the net change of solvation number(k), the compressibility of solvent(${\beta}$), ionization constant(K), the standard free energy change(${\Delta}G^{\circ}$), the standard enthalpy change(${\Delta}H^{\circ}$) and the standard entropy change (${\Delta}S^{\circ}$) of the cell reaction at equilibrium state have been also obtained. In this experiment, the emf of the cell; 12.5 % Cd(Hg)│$CdSO_4(3.105{\times}10^{-3}M),\;Hg_2SO_4│Hg$ have bee measured at temperature from 20 to $35^{\circ}C$ and at pressures from 1 to 2500 atms. The emf of the cell increased with increasing pressure at constant temperature, and did with increasing temperature at constant pressure. The net change of solvation number(k) of the cell reaction was 41.96 at $25^{\circ}C$, and kept constant value with pressure, while, K and ${\Delta}S^{\circ}$ increased with pressure, but whereas ${\Delta}G^{\circ}$ and ${\Delta}H^{\circ}$ decreased. Since the standard emf of the cell at high pressure can be calculated from the complete Nernst equation, the theory of chemical equilibrium could be developed with at high pressure as well as at the atmosphere.

  • PDF

A Study of Hygroscopic Moisture Diffusion Analysis in Multimaterial System (이종 소재 접합체의 흡습 질량 확산 해석)

  • Kim, Yong-Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.11-15
    • /
    • 2011
  • Heat transfer equation is first reviewed and then governing equation of moisture diffusion. Analogy scheme is applied to analysis the moisture absorption problem of polymers. It make possible to numerically analyze the diffusion problem for single medium by using commercial finite element code if it is under the isothermal loading condition. It is extended to special multimaterial system by introducing pressure ratio function, whose moisture characteristics of materials are proportional to temperature only. The weight changes of silicon-nonconductive-polymer joint model due to moisture absorption is measured and been very close to the numerical results as for single media with boundary condition with zero concentration, but yields numerical errors as for multisystem media.

Modeling of Cylinder Expansion Test Using JWL Equation of State (JWL 상태방정식을 활용한 실린더 팽창 실험 모델링)

  • Minju, Kim;Sangki, Kwon
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.19-31
    • /
    • 2023
  • There are various types of explosives, and each explosive has different characteristics such as water resistance, energy required for detonation, and crushing power, so understanding the characteristics of explosives is important for safe use and performance improvement. Computer simulation is used indirectly along with various experiments to understand the characteristics of explosives, and a state equation is used to express the explosive detonation process through computer simulation. In this study, the explanation of JWL EOS, which is mainly used among the state equations of explosives, and the cylinder expansion experiment to calculate the coefficient of JWL EOS were implemented as ANSYS AUTODYN and compared and analyzed with the actual experimental results. As a result, an error rate of around 20% occurred, and it was found that the overall change pattern of pressure and energy was consistent with the previously published experimental results.

Optimal Design of the Safety Valve by Response Surface Method (반응표면법을 이용한 안전밸브의 최적화)

  • Lee, Sang-Woo;Shin, Dae-Young;Byun, Cheol-Woong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.551-556
    • /
    • 2007
  • High pressure storage of the agent gas in fire suppression system was composed of tank, main valve and safety valve, which prevents the fracture of the high pressure storage. The safety valve has circular thin plate as fracture plate that was destroyed over fracture pressure. When inner pressure of the storage is reached the fracture pressure, the safety valve discharges gas and degrades simultaneously the inner pressure of the storage. There are design variables such as flow path diameter, inner diameter of the plastic packing ring, thickness of plate and fillet radius. In this variables, thickness of plate is set to be a value of 0.2mm. The main effect of variables on the inner pressure, has been decided using factorial design and statistical analysis. Therefore, the relation of variables are expressed by regression equation. It is disclosed results that the difference of fracture pressures between the equation and experiment has $2{\sim}5%$. Finally, using response surface method, the optimal design of the safety valve could be decided with safety pressure of 25MPa, where the fracture occurs on circular thin plate.

Numerical Analysis of Three-dimensional Sloshing Flow Using Least-square and Level-set Method (최소자승법과 Level-set 방법을 적용한 3차원 슬로싱 유동의 수치해석)

  • Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.759-765
    • /
    • 2017
  • In this study, a three-dimensional least-square, level-set-based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The code was validated by solving some benchmark problems. The proposed method was found to provide improved results against other existing methods, by using a coarser mesh. The results of the numerical experiments conducted during the course of this study showed that the proposed method was both robust and accurate for the simulation of three-dimensional sloshing problems. Using a substantially coarse grid, historical results of the dynamic pressure at a selected position corresponded with existing experimental data. The pressure history with a finer grid was similar to that of a coarse grid; however, a fine grid provided higher peak pressures. The present method could be extended to the analysis of a sloshing problem in a complex geometrical configuration using unstructured meshes owing to the features of FEM.

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: I. Numerical Model Development and Parallel Plate Test (지하 LPG 저장공동에 인접한 단일절리에서의 이상유체거동해석: I. 수치모형의 개발 및 모형실험)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.439-448
    • /
    • 2001
  • A two-dimensional finite difference numerical model was developed in order to simulate two-phase fluid flow in a single fracture. In the model, variation of viscosity with pressure and that of relative permeability with water saturation can be treated. For the numerical solution, IMPES method was used, from which the pressure and the saturation of water and gas were computed one by one. Seven cases of model test using parallel plates for a single fracture were performed in order to obtain the characteristic equation of relative permeability which would be used in the numerical model. it was difficult to match the characteristic curves of relative permeability from the model tests with the existing emperical equations, consequently a logistic equation was proposed. As the equation is composed of the parameters involving aperture size, it can be applied to any fracture.

  • PDF

An Experimental Study of Discharge Coefficient with Non-Circular Effervescent Type Twin-fluid Nozzle (비원형 Effervescent Type 이유체노즐의 Discharge Coefficient에 관한 실험적 연구)

  • Lee, Sang Ji;Park, Hyung Sun;Hong, Jung Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.682-685
    • /
    • 2017
  • An experimental study was carried out to investigate the injection characteristics of non-circular effervescent type twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and one kind of circular nozzle (C) were used. At this time, the Aerorator mounted on the nozzle used three different diameters to match the aspect ratio with the nozzle exit area. Therefore, experiments were performed according to three aspect ratios for each nozzle, and a total experiments were conducted. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzle. The discharge coefficients of the three kinds of nozzles were compared with the conventional equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 4 times larger. The droplet size (SMD) injected from the nozzle was found to be smaller in the non-circular shape than in the circular shape, which is expected to be caused by the difference of the discharge coefficient values.

  • PDF

1D Numerical Simulation of Geyser Phenomenon in Storm Drainage using Modified Preissmann Slot Model (Modified Preissmann Slot 모형을 이용한 지하방수로의 Geyser 발생 1차원 수치모의)

  • Choi, Seo Hye;Chegal, Sun Dong;Lee, SeungOh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.174-174
    • /
    • 2015
  • 국내의 국지성 집중호우와 같은 기후변화와 토지피복율 증가 등 복합적인 원인으로 인한 표면 유출수의 증가로 도시에서의 내수침수가 매년 빈번하게 발생하고 있다. 이러한 도심지 돌발홍수로 인한 피해에 대한 구조적인 대책으로 지하방수로가 효과적인 방안으로 대두되고 있으며, 현재 신월빗물저류배수시설이 설계단계에 있다. 그러나 미국, 일본 등의 국외의 기설치된 지하방수로에서 발생되는 Geyser 현상으로 인한 피해에 대한 연구는 국외에 비해 미비한 편이므로, 선행적으로 Geyser에 대한 물리기반의 동수역학적인 이해가 필요한 실정이다. Geyser는 홍수 시 급격한 유량의 유입으로 단파가 발생하여 지하방수로 내 공기의 압축이 발생하고 수직관을 통해 공기가 물과 함께 지상으로 분출되면서 발생된다. 따라서 공기와 물의 혼합 유동을 모의해야 하며 동시에 단파의 불연속성을 모의하기 위해서는 기존의 상용프로그램으로는 다소 어려움이 있다. 이에 본 연구에서는 지하방수로의 Geyser 현상의 발생 예측을 위해 1차원 Saint-Venant 방정식을 지배방정식으로 선정하였으며, 단파 발생을 수치적으로 안정적으로 모의하기 위해 Roe Approximate Riemann 수치기법을 사용하였다. 또한 공기의 압력항을 고려하기 위해서 수정된 형태의 Preissmann slot 모형을 적용하였다. Geyser 현상의 영향인자로서 지하방수로 수평관의 직경, 마찰계수, 바닥경사, 초기수위, 유입유량을 고려하였으며 상류에서 유입되는 유량에 의한 하류에서의 동수역학적 거동을 분석하였다. 5개의 영향인자의 변화에 따른 단파의 유입속도 및 공기부 압력의 변화를 관찰하여 Geyser 현상에 대한 동수역학적 검토를 수행하였다. 추후 본 연구결과를 적절히 활용한다면 지하방수로의 사용 안정성을 확보하고, 홍수발생 시 모니터링 인자도출에 도움이 될 것으로 예상된다.

  • PDF

Numerical Investigation of Deformation of Thin-walled Tube Under Detonation of Combustible Gas Mixture (가연성 연소 가스의 데토네이션에 의한 얇은 관 변형 모델링)

  • Gwak, Mincheol;Lee, Younghun;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • We present the results of a multi-material numerical investigation of the propagation of a combustible gas mixture detonation in narrow metal tubes. We use an experimentally tuned one step Arrhenius chemical reaction and ideal gas equation of state (EOS) to describe stoichiometric $H_2-O_2$ and $C_2H_4-O_2$ detonations. The purely plastic deformations of copper and steel tubes are modeled using the Mie-Gruneisen EOS and Johnson-Cook strength model. To precisely track the interface motion between the detonating gas and the deforming wall, we use the hybrid particle level-sets within the ghost fluid framework. The calculated results are validated against the experimental data because the results explain the process of the generation and subsequent interaction of the expansion wave with the high-strain-rate deformation of the walls.