• Title/Summary/Keyword: 암호화 시스템

Search Result 1,271, Processing Time 0.03 seconds

Gene Structure and Function of fkhE, a Forkhead Gene in a Filamentous Fungus Aspergillus nidulans (Aspergillus nidulans forkhead 유전자 fkhE의 구조와 기능 분석)

  • Park, Mi-Hye;Kim, Hyoun-Young;Kim, Jong-Hwa;Han, Kap-Hoon
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.160-166
    • /
    • 2010
  • A homothallic filamentous fungus Aspergillus nidulans has been used as the a model organism for studying growth and development for eukaryotic system. Various studies about specific transcription factors have been performed for elucidating the molecular mechanisms of growth, asexual and sexual developmental processes. Among them, the fkhE gene (AN2025.3) is located in chromosome VII and contains an ORF encoding 718 amino acid polypeptide intervening with two short introns. The cDNA sequencing revealed that at least four types of alternative splicing events were occurred when the fkhE gene was transcribed. The putative FkhE polypeptide contains a conserved forkhead domain and a bipartite nuclear localization signal at it's N-terminus and C-terminus, respectively. Deletion of fkhE resulted in impaired conidiophore formation in a solid medium. However, the sexual developmental process or cleistothecia formation was normal. Furthermore, fkhE deletion mutant produced conidiophores and conidia under the submerged culture, indicating that the fkhE gene is involved in asexual developmental process similar to the fkhF gene.

Area Efficient FPGA Implementation of Block Cipher Algorithm SEED (블록 암호알고리즘 SEED의 면적 효율성을 고려한 FPGA 구현)

  • Kim, Jong-Hyeon;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.4
    • /
    • pp.372-381
    • /
    • 2001
  • In this paper SEED, the Korea Standard 128-bit block cipher algorithm is implemented with VHDL and mapped into one FPGA. SEED consists of round key generation block, F function block, G function block, round processing block, control block and I/O block. The designed SEED is realized in an FPGA but we design it technology-independently so that ASIC or core-based implementation is possible. SEED requires many hardware resources which may be impossible to realize in one FPGA. So it is necessary to minimize hardware resources. In this paper only one G function is implemented and is used for both the F function block and the round key block. That is, by using one G function sequentially, we can realize all the SEED components in one FPGA. The used cell rate after synthesis is 80% in Altem FLEXI0KlOO. The resulted design has 28Mhz clock speed and 14.9Mbps performance. The SEED hardware is technology-independent and no other external component is needed. Thus, it can be applied to other SEED implementations and cipher systems which use SEED.

  • PDF

Lightweight Validation Mechanism for IoT Sensing Data Based on Obfuscation and Variance Analysis (난독화와 변화량 분석을 통한 IoT 센싱 데이터의 경량 유효성 검증 기법)

  • Yun, Junhyeok;Kim, Mihui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.9
    • /
    • pp.217-224
    • /
    • 2019
  • Recently, sensor networks are built and used on many kinds of fields such as home, traffic, medical treatment and power grid. Sensing data manipulation on these fields could be a serious threat on property and safety. Thus, a proper way to block sensing data manipulation is necessary. In this paper, we propose IoT(Internet of Things) sensing data validation mechanism based on data obfuscation and variance analysis to remove manipulated sensing data effectively. IoT sensor device modulates sensing data with obfuscation function and sends it to a user. The user demodulates received data to use it. Fake data which are not modulated with proper obfuscation function show different variance aspect with valid data. Our proposed mechanism thus can detect fake data by analyzing data variance. Finally, we measured data validation time for performance analysis. As a result, block rate for false data was improved by up to 1.45 times compared with the existing technique and false alarm rate was 0.1~2.0%. In addition, the validation time on the low-power, low-performance IoT sensor device was measured. Compared to the RSA encryption method, which increased to 2.5969 seconds according to the increase of the data amount, the proposed method showed high validation efficiency as 0.0003 seconds.

Performance Analysis of Docker Container Migration Using Secure Copy in Mobile Edge Computing (모바일 엣지 컴퓨팅 환경에서 안전 복사를 활용한 도커 컨테이너 마이그레이션 성능 분석)

  • Byeon, Wonjun;Lim, Han-wool;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.901-909
    • /
    • 2021
  • Since mobile devices have limited computational resources, it tends to use the cloud to compute or store data. As real-time becomes more important due to 5G, many studies have been conducted on edge clouds that computes at locations closer to users than central clouds. The farther the user's physical distance from the edge cloud connected to base station is, the slower the network transmits. So applications should be migrated and re-run to nearby edge cloud for smooth service use. We run applications in docker containers, which is independent of the host operating system and has a relatively light images size compared to the virtual machine. Existing migration studies have been experimented by using network simulators. It uses fixed values, so it is different from the results in the real-world environment. In addition, the method of migrating images through shared storage was used, which poses a risk of packet content exposure. In this paper, Containers are migrated with Secure CoPy(SCP) method, a data encryption transmission, by establishing an edge computing environment in a real-world environment. It compares migration time with Network File System, one of the shared storage methods, and analyzes network packets to verify safety.

Implementation of a pipelined Scalar Multiplier using Extended Euclid Algorithm for Elliptic Curve Cryptography(ECC) (확장 유클리드 알고리즘을 이용한 파이프라인 구조의 타원곡선 암호용 스칼라 곱셈기 구현)

  • 김종만;김영필;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.17-30
    • /
    • 2001
  • In this paper, we implemented a scalar multiplier needed at an elliptic curve cryptosystem over standard basis in $GF(2^{163})$. The scalar multiplier consists of a radix-16 finite field serial multiplier and a finite field inverter with some control logics. The main contribution is to develop a new fast finite field inverter, which made it possible to avoid time consuming iterations of finite field multiplication. We used an algorithmic transformation technique to obtain a data-independent computational structure of the Extended Euclid GCD algorithm. The finite field multiplier and inverter shown in this paper have regular structure so that they can be easily extended to larger word size. Moreover they can achieve 100% throughput using the pipelining. Our new scalar multiplier is synthesized using Hyundai Electronics 0.6$\mu\textrm{m}$ CMOS library, and maximum operating frequency is estimated about 140MHz. The resulting data processing performance is 64Kbps, that is it takes 2.53ms to process a 163-bit data frame. We assure that this performance is enough to be used for digital signature, encryption & decryption and key exchange in real time embedded-processor environments.

The Impact of Blockchain Technology on Banks' Conventional Trade Settlements (블록체인기술이 무역결제방식에 미치는 영향에 관한 연구)

  • Zhao, Xiao;Hwang, Ki-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.346-354
    • /
    • 2021
  • Since 2015, Blockchain has experienced rapid development throughout the world, institutions including Central Banks, Government Departments, Commercial Banks, IT Giants are all accelerating their exploration on Blockchain, and investment on Blockchain related R&D departments and start-up companies also shows explosive growth. This paper studies the impact of blockchain technology on banks' conventional trade settlement methods and describes blockchain technology in term of its concepts, advantages, and disadvantages. It also studies the application processes of blockchain technology combined with conventional trade settlement methods (remittance, collection, and L/C), and analyzes the positive and negative impacts of blockchain technology on the conventional trade settlement methods. In addition, this paper lists the blockchain application cases, analyzes the technology development status and existing problems, and puts forward suggestions and measures for the development of blockchain finance in China based on the case analysis and impact research.

Research of Specific Domestic De-identification Technique for Protection of Personal Health Medical Information in Review & Analysis of Overseas and Domestic De-Identification Technique (국내외 비식별화 기술에 관한 검토 분석에 따른 개인건강의료정보 보호를 위한 국내 특화 비식별화 기술 제안에 관한 연구)

  • Lee, Pilwoo;In, Hanjin;Kim, Cheoljung;Yeo, Kwangsoo;Song, Kyoungtaek;Yu, Khigeun;Baek, Jongil;Kim, Soonseok
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.7
    • /
    • pp.9-16
    • /
    • 2016
  • As life in a rapidly changing Internet age at home and abroad, large amounts of information are being used medical, financial, services, etc. Accordingly, especially hospitals, is an invasion of privacy caused by leakage and intrusion of personal information in the system in medical institutions, including clinics institutions. To protect the privacy & information protection of personal health medical information in medical institutions at home and abroad presented by national policies and de-identification processing technology standards in accordance with the legislation. By comparative analysis in existing domestic and foreign institutional privacy and de-identification technique, derive a advanced one of pseudonymization and anonymization techniques for destination data items that fell short in comparison to the domestic laws and regulations, etc. De-identification processing technology for personal health information is compared to a foreign country pharmaceutical situations. We propose a new de-identification techniques by reducing the risk of re-identification processing to enable the secondary use of domestic medical privacy.

Optimized Implementation of PIPO Lightweight Block Cipher on 32-bit RISC-V Processor (32-bit RISC-V상에서의 PIPO 경량 블록암호 최적화 구현)

  • Eum, Si Woo;Jang, Kyung Bae;Song, Gyeong Ju;Lee, Min Woo;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.6
    • /
    • pp.167-174
    • /
    • 2022
  • PIPO lightweight block ciphers were announced in ICISC'20. In this paper, a single-block optimization implementation and parallel optimization implementation of PIPO lightweight block cipher ECB, CBC, and CTR operation modes are performed on a 32-bit RISC-V processor. A single block implementation proposes an efficient 8-bit unit of Rlayer function implementation on a 32-bit register. In a parallel implementation, internal alignment of registers for parallel implementation is performed, and a method for four different blocks to perform Rlayer function operations on one register is described. In addition, since it is difficult to apply the parallel implementation technique to the encryption process in the parallel implementation of the CBC operation mode, it is proposed to apply the parallel implementation technique in the decryption process. In parallel implementation of the CTR operation mode, an extended initialization vector is used to propose a register internal alignment omission technique. This paper shows that the parallel implementation technique is applicable to several block cipher operation modes. As a result, it is confirmed that the performance improvement is 1.7 times in a single-block implementation and 1.89 times in a parallel implementation compared to the performance of the existing research implementation that includes the key schedule process in the ECB operation mode.

A Performance Comparison of the Mobile Agent Model with the Client-Server Model under Security Conditions (보안 서비스를 고려한 이동 에이전트 모델과 클라이언트-서버 모델의 성능 비교)

  • Han, Seung-Wan;Jeong, Ki-Moon;Park, Seung-Bae;Lim, Hyeong-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.286-298
    • /
    • 2002
  • The Remote Procedure Call(RPC) has been traditionally used for Inter Process Communication(IPC) among precesses in distributed computing environment. As distributed applications have been complicated more and more, the Mobile Agent paradigm for IPC is emerged. Because there are some paradigms for IPC, researches to evaluate and compare the performance of each paradigm are issued recently. But the performance models used in the previous research did not reflect real distributed computing environment correctly, because they did not consider the evacuation elements for providing security services. Since real distributed environment is open, it is very vulnerable to a variety of attacks. In order to execute applications securely in distributed computing environment, security services which protect applications and information against the attacks must be considered. In this paper, we evaluate and compare the performance of the Remote Procedure Call with that of the Mobile Agent in IPC paradigms. We examine security services to execute applications securely, and propose new performance models considering those services. We design performance models, which describe information retrieval system through N database services, using Petri Net. We compare the performance of two paradigms by assigning numerical values to parameters and measuring the execution time of two paradigms. In this paper, the comparison of two performance models with security services for secure communication shows the results that the execution time of the Remote Procedure Call performance model is sharply increased because of many communications with the high cryptography mechanism between hosts, and that the execution time of the Mobile Agent model is gradually increased because the Mobile Agent paradigm can reduce the quantity of the communications between hosts.

Characterization of Exolytic GH50A β-Agarase and GH117A α-NABH Involved in Agarose Saccharification of Cellvibrio sp. KY-GH-1 and Possible Application to Mass Production of NA2 and L-AHG (Cellvibrio sp. KY-GH-1의 아가로오스 당화 관련 엑소형 GH50A β-아가레이즈와 GH117A α-NABH의 특성 및 NA2와 L-AHG 양산에의 적용 가능성)

  • Jang, Won Young;Lee, Hee Kyoung;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.356-365
    • /
    • 2021
  • Recently, we sequenced the entire genome of a freshwater agar-degrading bacterium Cellvibrio sp. KY-GH-1 (KCTC13629BP) to explore genetic information encoding agarases that hydrolyze agarose into monomers 3,6-anhydro-L-galactose (L-AHG) and D-galactose. The KY-GH-1 strain appeared to possess nine β-agarase genes and two α-neoagarobiose hydrolase (α-NABH) genes in a 77-kb agarase gene cluster. Based on these genetic information, the KY-GH-1 strain-caused agarose degradation into L-AHG and D-galactose was predicted to be initiated by both endolytic GH16 and GH86 β-agarases to generate NAOS (NA4/NA6/NA8), and further processed by exolytic GH50 β-agarases to generate NA2, and then terminated by GH117 α-NABHs which degrade NA2 into L-AHG and D-galactose. More recently, by employing E. coli expression system with pET-30a vector we obtained three recombinant His-tagged GH50 family β-agarases (GH50A, GH50B, and GH50C) derived from Cellvibrio sp. KY-GH-1 to compare their enzymatic properties. GH50A β-agarase turned out to have the highest exolytic β-agarase activity among the three GH50 isozymes, catalyzing efficient NA2 production from the substrate (agarose, NAOS or AOS). Additionally, we determined that GH117A α-NABH, but not GH117B α-NABH, could potently degrade NA2 into L-AHG and D-galactose. Sequentially, we examined the enzymatic characteristics of GH50A β-agarase and GH117A α-NABH, and assessed their efficiency for NA2 production from agarose and for production of L-AHG and D-galactose from NA2, respectively. In this review, we describe the benefits of recombinant GH50A β-agarase and GH117A α-NABH originated from Cellvibrio sp. KY-GH-1, which may be useful for the enzymatic hydrolysis of agarose for mass production of L-AHG and D-galactose.