• Title/Summary/Keyword: 암석 풍화

Search Result 361, Processing Time 0.031 seconds

Estimation of Weathering Characteristics of Sandstone and Andesite by Freeze-Thaw Test (동결융해시험에 의한 사암 및 안산암의 풍화특성 평가)

  • Kang, Seong-Seong;Kim, Jong-In;Obara, Yuzo;Hirata, Atsuo
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.145-150
    • /
    • 2011
  • Variations of physical properties such as weight loss rate, wave velocity and uniaxial compressive strength after performing freeze-thaw cyclic test were measured in order to define weathering characteristics of sandstone and andesite. Weight change in specimens of the two rocks decreased with increasing the repetition number of freeze-thaw cyclic test. In particular, weight loss of andesite specimens was very irregular. P-wave velocity of sandstone specimens decreased more than 5%. On the other hand, P-wave velocity of andesite specimens do not vary up to 500 cycles and decreased more than 5% after 1000 cycles. This implies that the sandstone are easily weakened and loosened by weathering processes, while the andesite are relatively strong. In addition, the wave velocity changes of the andesite specimens coincident with the weight change. Uniaxial compressive strengths of the sandstone specimens slightly decreased at the early stage of the freezing-thawing cyclic test, then tended to be irregular after 64 cycles. In conclusion, the rock specimens showed smaller weight loss, less had lower strength reduction rate.

Variation of Rare Earth Element Patterns during Rock Weathering and Ceramic Processes: A Preliminary Study for Application in Soil Chemistry and Archaeology (암석의 풍화과정 및 도자기 제조과정에 따른 희토류원소 분포도의 변화: 토양화학 및 고고학적 응용을 위한 기초연구)

  • Lee, Seung-Gu;Kim, Kun-Han;Kim, Jin-Kwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-143
    • /
    • 2008
  • On the basis of chemical composition of granite, gneiss and their weathering products, in this paper, rare earth elements (REEs) was estimated as tracer for clarifying a geochemical variance of earth surface material during weathering process. The chemical composition of clay, clay ware and pottery also were measured for testifying usefulness of REE geochemistry in clarifying the source material of pottery. It was observed that there was no systematic variation of chemical composition among source rock, weathered rock and soil during weathering process. The chemical composition of clay, clay ware and pottery also did not show systematic variation by baking pottery. However, PAAS (Post Archean Australian Shale)-normalized REE patterns of rock-weathered rock-soil and clay-clay ware-pottery are similar regardless of weathering process or ceramic art. Our results confirm that REE geochemistry is powerful tool for clarifying the source materials of surface sediment or archaeological ceramic products.

Outcomes and Tasks of the Research on Weathering pitsin Korea - The Case of Tafoni and Gnamma - (한국의 풍화혈 연구 성과와 과제 - 타포니·나마를 중심으로 -)

  • Park, Ji-Sun;Kwon, Dong-Hi
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.37-50
    • /
    • 2013
  • This study analyzes results of published studies of weathering pits in Korea focusing on tafoni and gnamma and it suggests new types of weathering pits and next subjects through the analysis. 34 papers, published between 1978 and February 2012, have been analyzed and the following are details of the analysis. In terms of the study results, weathering pits are commonly developed on coarse-grained rocks such as granite, but also found on various rocks. Multiple reasons including mechanical, chemical and salt weathering create weathering pits and they are closely related to the geological structure. Weathering pits are classified as tafoni and gnamma but the forms have not been verified. In the future, quantitative analysis must be conducted find the factors influencing creation, forms and development of weathering pits.

Petrological and mineralogical characteristics of the rocks constituting the Sungryemun (South Gate) (숭례문 구성 석재의 암석학적 및 광물학적 특징)

  • 박찬수;이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.196-206
    • /
    • 2003
  • The geochemical and mineralogical investigation on the rocks and repair material comprising of the Sungryemun (The 1st National Treasure) has been made. Rock of the Sungryemun is highly weathered coarse-grained calc-alkali granite. The rock consists mainly of quartz, perthite, plagioclase and biotite with small amounts of orthoclase, muscovite, chlorite and sericite, which are major weathering products from perthite. For obtaining informations about degree of weathering, mineral composition of the original rock calculated by CIPW norm and weathered rock composition determined by XRD quantitative analysis were plotted on a ternary diagram of quartz-potash feldspar-plagioclase. Original rock compositions are plotted on the central granite area. whereas weathered ones are plotted on the granite area close to quartz. The result means that quartz is more abundant in weathered rock, due to selective chemical weathering of potash feldspar and plagioclase over quartz. On the whole, surface of the rocks were black-coated, exfoliated and highly fractured due to the physical and chemical weathering and heavy load has made the cracks in the lower parts of the stone construction. Also, cement and nails, which was used as repair material, during the repair work in the early 1960's, has accelerated the weathering process. Furthermore, weathered conditions of repair materials are very severe. Therefore, it is very urgent to establish of the conservation plan for the Sungryemun.

The Effect of the Mineralogical Featuresof Aggregates in the Bonding Force and Workability of the Concrete (골재의 암석학적 특징이 부착성과 작업성에 미치는 영향-화강암, 풍화화강암, 안산암, 석회암-)

  • Um, Tai-Sun;Choi, Sang-Heul
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.207-216
    • /
    • 1997
  • 암석학적 특징이 다른 골재를 사용할 때 콘크리트의 기본특성에 영향을 골재품질 시험과 함께, 화학분석, X.R.D, D.T-T.G.A S.E.M, 편광현미경, 실체현미경관찰등을 하여 조사하므로서 암질특성과 콘크리트의 기본특성과의 관계를 해석하였다. 연구결과, 운모 또는 점토계 광물과 같은 풍화광물이 혼재하지 않고 거대 결정을 갖ㄴ 화강암계 골재는 풍화 화강암, 안산암, 석회암, 골재에 비해 골재품질이 저조해도 작업성이나 강도특성이 우수하였다. 이는 골재의 표면거칠기와 구형도가 양호해 골재와 시멘트페이스트의 부착력이 강화되기 때문이며 고강도콘크리트제조를 위한 골재의 암질로는 거대 결정으로 구성되고 풍화광물이 없는 암질을 선정하는 것이 중요하다. 결정이 크고 풍화광물(운모, 점토계 고아물)이 혼재되지 않은 화강암 골재를 사용한 고강도콘크리트는 석회암, 안산암 골재를 사용한 콘크리트에 비해 150-200kg/$\textrm{cm}^2$이상의 강도증진과 작업성이 향상되었다.

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.