• Title/Summary/Keyword: 암석 시편

Search Result 75, Processing Time 0.023 seconds

A Study on Correlation between Heterogeneity Index and Mechanical Properties of Igneous Rocks using 3D X-ray Computed Tomography Image (3차원 X-ray CT 영상을 이용한 화성암 불균질 지수와 역학적 특성과의 상관관계에 대한 연구)

  • Jeong, Yeon Jong;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.333-342
    • /
    • 2017
  • In this study, the heterogeneity of internal structure of various igneous rocks acquired in Korea was quantified and correlated with the seismic velocity and the point load strength. Three-dimensional X-ray Computed Tomography (CT) was used to obtain information on the internal structure of the rock specimen, and the representative unit length (LR) was calculated by applying a statistical technique to the CT images. We also proposed an estimation equation to predict the mechanical properties of rocks from the relationship between LR, acoustic velocity and point load strength. In the proposed method, it is shown that the characterization of internal structure of rocks could be utilized as an indirect index to account for the mechanical behavior of rocks by substituting physical laboratory testing for non-destructive test.

Study on Deterioration of Stone Monuments Constructed with Carbonate Rock by Acid Rain (탄산염질 암석으로 구성된 석조문화재의 산성비에 의한 손상 연구)

  • Do, Jin Young;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.273-283
    • /
    • 2013
  • The artificial rain (pH 4.0, pH 5.6 and pH 6.85) and weathering simulation test are applied in dolomitic marble for the prediction of deterioration of the stone monuments constructed with carbonate rock by acid rain. pH of the applied rain all increase to about neutral pH after reaction of marble. The contents of $Ca^{2+}$ and $Mg^{2+}$ have increased more than twofold in two acid rain and deionized neutral rain after reaction of marble. The weight of marble is expected to decrease $0.00037kg/m^2$ each test cycle by pH 4.0 rain. This weight reduction rate of marble is 1.4 and 3.1 times more in pH 5.6 and pH 6.85 rain respectively, and 3.7 times more in only artificial weathering test. The compressive strength of marble is expected to decrease 0.2468, 0.1791 and $0.1280kg/m^2$ per test cycle with pH 4.0, pH 5.6 and pH 6.85 rain, respectively. These results mean that more acidic rain more enfeeble the strength of marble. Dolomite and small amount of calcite are precipitated in the rains after reaction of marble.

A study on the estimation of fracture toughness of granite by acoustic emission (미소 파괴음 빈도 측정에 의한 화강암의 파괴인성 평가에 관한 연구)

  • 신재근;이상은;임한욱
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.227-236
    • /
    • 2000
  • The fracture toughness can be measured by the two testing methods using chevron-notched specimen according to the ISRM Working Group of Commission of Testing Methods. They are chevron bend (CB) test and short rod (SR) test. In this study, the suggested methods (Level I tests) were conducted on the CB and SR specimens of Chuncheon granite. In addition. the J-integral analysis was combined with an acoustic emission technique to determine the fracture toughness. The results from two telling methods were analyzed in terms of the anisotropy and the acoustic emission characteristics.

  • PDF

An Experimental Study on the Dynamic Increase Factor and Strain Rate Dependency of the Tensile Strength of Rock Materials (암석재료 인장강도의 동적 증가계수 및 변형률 속도 의존성에 대한 실험적 연구)

  • Oh, Se-Wook;Choi, Byung-Hee;Min, Gyeong-Jo;Jung, Yong-Bok;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.10-21
    • /
    • 2021
  • Brittle materials such as rocks and concretes exhibit large strain-rate dependency under dynamic loading conditions. This means that the mechanical properties of such materials can significantly be varied according to load velocity. Thus, the strain-rate dependency is recognized as one of the most important considerations in solving problems of blast engineering or rock dynamics. Unfortunately, however, studies for characterizing the dynamic properties of domestic rocks and other brittle materials are still insufficient in the country. In this study, dynamic tensile tests were conducted using the Hopkinson pressure bar apparatus to characterize the dynamic properties of Geochang granite and high-strength concrete specimens. The dynamic Brazilian disc test, which is suggested by ISRM, and the spalling method were applied. In general, the latter is believed to have some advantages in experiments under high-strain rate deformation. It was found from the tests that there were no significant difference between the dynamic tensile strengths obtained from the two different test methods for the two materials given. However, this was not the expected result before the tests. Actually, authors expected that there be some differences between them. Hence, it is thought that further investigations are needed to clarify this results.

Analysis of Weathering Sensitivity by Swelling of Domestic Highway Sites (국내 고속도로현장의 스웰링에 의한 풍화민감도 분석)

  • Jang, Seokmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2022
  • This study aims to observe the swelling representative rocks in Korea and to suggest improvements in the use of test methods and prior analysis in relation to the weathering of rocks. The swelling test and analysis were performed on the drilling cores obtained for the ground investigation at the domestic highway construction site. For the method of determining the absorption expansion index of rocks, the method proposed in "Standard Methods for Sample Collection and Specimen Preparation" of ISRM and Korean Rock Engineers Standard Rock Test Method was used. The specimen for the measurement of the expansion displacement was cylindrical with a height of 10 cm and a diameter of 5 cm. The existing swelling analysis method evaluates the sensitivity to weathering by using the maximum expansion displacement, but since the classification by bedrock grade is unclear, it is reasonable to use the rate of change of the expansion displacement according to the immersion time. It is necessary to conduct an experiment to distinguish between weathering and fault deterioration. In addition, long-term weathering prediction technology for each cancer type is needed through the expansion displacement analysis of the chemical weathering stage.

Determination of Elastic Constants of Transversely Isotropic Rocks from a Single Test Specimen. (단일 시편을 이용한 평면 이방성 암석의 탄성계수 결정)

  • 장보안;나광희;장명환
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.72-78
    • /
    • 2001
  • A method to determine elastic constants for transversely isotropic rock using a single uniaxial compression test was proposed by Kim(1995). However, some problems were found when this method was applied. We derived two different equations in determination of elastic constants using V$\sub$12/ and V$\sub$21/ and performed uniaxial compression tests for two specimens whose angles between transversely isotropic plane and horizontal plane are 30$^{\circ}C$ and 65$^{\circ}C$. The anisotropic elastic constants should be calculated with different equations depend on the angle. If the anisotropic angle is lower than 45$^{\circ}$, V$\sub$21/ may be used. However, if the anisotropic angle is higher than 45$^{\circ}$, V$\sub$12/ may be used.

  • PDF

Deterioration of the Rock-carved Seated Buddha at Golguram Hermitage, Gyeongju and Effect of the Ethylsilicate Consolidant (경주 골굴암 마애여래좌상 구성암석의 손상과 에틸실리케이트 암석강화제의 효과)

  • Do, Jin Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.71-81
    • /
    • 2017
  • Rock properties and the effects of chemicals that were used for conservation were studied for effective conservation treatment of Seated Buddha rock carving, which is composed of grayish white tuff, at Golguram Hermitage, Gyeongju. The rocks contain 3-5% montmorillonite, a swelling mineral and reacting with water, the d spacing of swelling minerals was increased (1.54-2.69%). On the one hand, the physical properties of the rock samples, such as surface hardness, water absorption rate, and porosity improved after the application of ethyl silicate-based stone strengthener. On the other, the interlayer of swelling minerals decreased and greater the of swelling mineral content, the greater is the extent of swelling (4.23-12.12%). When the ethyl silicate-based stone strengthener was applied after pretreatment with a swelling inhibitor, the physical properties were similar to those of the stone strengthener alone. There was no interlayer spacing change of swelling minerals due to swelling inhibition treatment; however, when the stone strengthener was applied after the swelling inhibitor, interlayer changes were similar to those when only the stone strengthener was treated (4.10-11.85%). Though the peak intensity of swelling minerals in X-ray diffraction pattern decreased, the effect of the swelling inhibitor was almost negligible. Therefore, it is not appropriate to use ethyl silicate-based stone strengthener for Golgulam rock containing swelling minerals and supplementing them with a swelling inhibition system is not effective. Because weathering rapidly progresses when swelling minerals contact moisture, for now, measures to prevent water contact, such as expansion of the canopy, are needed in the lower and side parts of the carving.

A Study of Mineral Quantification on Clay-Rich Rocks (점토질 암석의 광물정량 분석법 연구)

  • Byeong-Kook, Son;Gi-O, An
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.431-445
    • /
    • 2022
  • A quantitative phase analysis method of X-ray powder diffraction was studied to determine the mineral content of clay-rich rocks practically as well as effectively. For quantitative X-ray powder diffraction analysis of the clay-rich rocks, it is necessary to prepare whole-rock powder samples with a random orientation by side mounting method. In addition, for the identification of the clay minerals in the rock, it is required to prepare an oriented mount specimen with a clay particle size of 2 ㎛ or less, ethylene glycol treatment, and heat treatment. RIR (reference intensity ratio) and Rietveld method were used for the quantitative analysis of the clay-rich rocks. It was possible to obtain the total clay and the non-clay minerals contents from the whole-rock X-ray diffraction profiles using the RIR values. In addition, it was possible to calculate the relative content of each clay mineral from the oriented X-ray diffraction profiles of the clay particle size and assign it to the total clay. In the Rietveld method of whole-rock X-ray diffraction, effective quantitative values were obtained from the Rietveld diffraction patterns excluded the region of less than 10 degrees (2θ). Similar quantitative values were shown in not only the RIR but the Rietveld methods. Therefore, the analysis results indicate a possibility of a routine quantitative analysis of clay-rich rocks in the laboratory. However, quantitative analysis of clay minerals is still a challenge because there are numerous varieties of clay minerals with different chemical and structural characteristics.

Calculation Method of Constant Linear Velocity Spiral Path for Pin-on-disk Abrasion Test using a Hollow Type Rock Sample (중공형 암석시편의 Pin-on-disk 마모시험을 위한 등속도 나선경로 계산방법)

  • Kang, Hoon;Kim, Dae-ji;Song, Changheon;Oh, Joo-Young;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.394-403
    • /
    • 2020
  • This technical note describes the calculation method of continuous constant linear velocity Archimedean spiral paths which are applied to the pin-on-disk abrasion test. Approximate constant linear velocity Archimedean spirals have unstable velocities in the very near region of the rotational origin. Thus, in this technical note, the offset distance from the rotational origin was given by using a hollow type rock sample to maintain the constant velocity during the test. Also, to connect the inward and outward spirals continuously, the information of start and end points were input on the next spiral path consecutively. Furthermore, the calculation program was developed to provide convenience for calculating constant linear velocity spirals according to the specimen dimension and abrasion test conditions.

Experimental Study of Breakdown Pressure, Acoustic Emission, and Crack Morphology in Liquid CO2 Fracturing (액체 이산화탄소 파쇄법의 파쇄 압력, 음향 방출, 균열 형상에 관한 실험적 연구)

  • Ha, Seong Jun;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.157-171
    • /
    • 2019
  • The fracturing by liquid carbon dioxide ($LCO_2$) as a fracking fluid has been an alternative to mitigate the environmental issues often caused by the conventional hydraulic fracking since it facilitates the fluid permeation owing to its low viscosity. This study presents how $LCO_2$ injection influences the breakdown pressure, acoustic emission, and fracture morphology. Three fracturing fluids such as $LCO_2$, water, and oil are injected with different pressurization rate to the synthetic and porous mortar specimens. Also, the shale which has been a major target formation in conventional fracking practices is also tested to examine the failure characteristics. The results show that $LCO_2$ injection induces more tortuous and undulated fractures, and particularly the larger fractures are developed in cases of shale specimen. On the other hand, the relationship between the fracturing fluids and the breakdown pressure shows opposite tendency in the tests of mortar and shale specimens.