• Title/Summary/Keyword: 암석 불균질성

Search Result 27, Processing Time 0.025 seconds

Determination of Uranium Concentration in Solid- and Liquid-state Geological Materials by Fission Track Registration Technique and its Applicability (피션트랙 검출기법에 의한 고체 및 액체상태 지질물질의 우라늄 정량과 그 적용성)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.77-90
    • /
    • 2015
  • The fission track registration techniques for accurate determinations of uranium in solid- and liquid-state geological materials were recommended and their applicability were examined. The determination of uranium can be achieved by optical counting of neutron-induced fission tracks of $^{235}U$ registered on solid-state track detectors under high magnification. In a dry registration method using powdered pellets of rocks (e.g., granite and coal) showing good uranium-affinity, it was not easy to decide an overall mean concentration over the total sample owing to track-clusters caused by frequent presence of uranium-bearing minerals. Separate scanning for homogeneous and track-clustered parts may be an alternative choice. Assuring the homogeneity over the whole sample, high reproducibilities were confirmed both from duplicate detections using mica and Lexan polycarbonate detectors and from multiple measurements at different thermal neutron fluences. The wet registration method using sealed quartz tubes is recommended to overcome the common heterogeneity in uranium concentrations of $10^1ppm$ and more. Adopting the wet registration, the uranium homogeneity was recovered below the $10^0ppm$ level and the lower detection limit was proved to reach without difficulty the $10^2ppb$ (i.e. $ng\;g^{-1}$) level.

Notch Sensitivity Analysis for the Rock Fracture Toughness (암석의 파괴인성계수와 균열감응도의 해석)

  • 백환조
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.143-149
    • /
    • 1997
  • 암석의 파괴인성계수(fracture toughness)는 균열의 성장에 대한 암석의 저항을 나타낸다. 실험실에서 측정한 파괴인성계수는 일반적인 암석의 불균질성이나 이방성 외에도 시험편의 형상이나 하중조건에 의하여 크게 영향을 받는다. 따라서, 제한된 수의 시험편을 사용하여 측정된 파괴인성계수는 자료의 분산이 심하므로 실제 적용에 있어서 문제가 된다. 균열감응도란 파괴인성계수의 측정에 사용되는 시험편의 형상에 따라 결정되는 지수로서, 시험편의 파괴가 균열의 성장에 의한 것인지, 혹은 인장강도에 의한 것인지를 판별하는 기준이 된다. 이러한 균열감응도를 파악하여 암석의 파괴인성계수 측정에 유효한 시험편의 크기나 초기균열 길이의 범위를 설정할 수 있다. 이는 또한 실험실에서 측정된 차괴인성계수의 유효성 여부를 판별하는 기준으로 사용될 수 있다. 본 논문에서는 암석의 파괴인성계수의 측정에 흔히 사용되는 몇 가지 형태의 시험편들에 대하여 균열감응도를 계산하고 이에 따른 초기균열 길이의 범위를 제시하고자 한다.

  • PDF

Case Study on the Tunnel Collapses during the Construction and Application of Geotechnical Investigation (터널 시공 중 지반 관련 사고 사례의 원인 분석과 지반 조사 결과의 활용에 관한 검토)

  • Park, Nam-Seo;Lee, Chi-Mun;Gang, Sang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.04a
    • /
    • pp.47-60
    • /
    • 1998
  • It is considered in this paper that the main causes of tunnel collapse during the construction were the insufficiency of data of geotechnical investigations, or their limits due to special ground condition such as its heterogeneity and anisotropy It is thought that safety of ground can be affected by the geological conditions such as presences of discontinuities in good intact rocks, and considered to be necessary that awareness of the conditions of discontinuities in advance is important to apply adequate reinforcement measures. It is also shown that a serious accident had occurred because of the unawareness of the permeable alluvial deposits at the top of the tunnel. And it is shown that the example of application of the results of geotechnical investigation such as face-mapping, pilot boring etc. during tunnel construction, and a serious deformation of tunnel under special geological condition. Therefore, it is strongly recommended to perform an adequate geotechnical investigation to confirm the geotechnical conditons of ground before design, and supplimentary investigation is also needed depending on conditions for safe and econonic construction.

  • PDF

Petrology of host granites and enclaves from the Bohyeonsan area, Euiseong Basin (의성분지 보현산 일대 화강암류와 포획암에 대한 암석학적 연구)

  • 좌용주;김건기
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.187-203
    • /
    • 2000
  • Mafic microgranular enclaves (MME) occur in the granites from the Bohyunsan area. The host granites are generally of granodioritic and granitic compositions. The MME can be divided into magic mineral clusters, quartz diorite and diorite according to their occurrence. Halter variation diagrams show linear trends between the MME and the host granites. Though the rim compositions of plagioclase in the host granites and the MME are similar the core compositions of plagioclase in some host granites show abnormally high An content. The Mg/(Mg+Fe) ratio of hornblende in the host granites gradually increase from the core to the rim. The chemical composition of minerals in the host granites had been affected by more marc magma composition. The modelling of major elements of the MME and hybrid host granites also indicate that they result from simple mingling/mixing between a dioritic magma and the host granite magma. The MME are thus interpreted to be globules of a more mafic magma which intruded the granite magma. Partial equilibration has been achieved between the MME and the host granites after they were commingled with each other.

  • PDF

Petrological Study of Cretaceous Granitic Recks in the Waryongsan Area, Southwestern Gyeongsang Basin: Compositional Change of Granitic Rocks by Magma Mingling (경상분지 남서부 와룡산 일대에 분포하는 백악기 화강암류에 관한 암석학적 연구: 마그마 불균질 혼합에 의한 화강암류의 조성변화)

  • Kim Kun-Ki;Kim Jong-Sun;Jwa Yong-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.12-23
    • /
    • 2005
  • Cretaceous granitic rocks in the Waryongsan area occur as a stock and show compositional changes with altitude. They include mafic microgranular enclaves (MME) with various sizes and types. The MMEs present clear evidence of magma mingling such as supercooling zone, mantling texture and back veining. The granitic rocks are divided into porphyritic granite, porphyritic granodiorite and fined-grained granite by their petrographic characteristics and modal compositions. The MMEs are discriminated to quartzdioritie, quartzmonzodiorite and tonalite. They have varying areal proportions in each granitic rock-type: 10∼l5% in the porphyritic granite, about 50% in the porphyritic granodiorite, and about 20% in the fined-grained granite. SiO₂ contents shows compositional change of 61.2∼72.0wt.%. Mean SiO₂ contents have 61.7wt.% in the porphyritic granodiorite, 68.6wt.% in the porphyritic granite. and 71.9wt.% in the fined-grained granite, respectively. Major oxide contents of the granitic rocks linearly vary with SiO₂ contents from the porphyiritic granodiorite to the fine-grained granite on Harker diagrams. Linear compositional variations seem to have been caused by differential degrees of mingling between mafic magma and host granite. Where larger amount of mafic magma was injected into the host granitic magma, the two magmas reached to thermal equilibrium more quickly and eventually chemical mixing occurred to produce the composition of the porphyritic granodiorite. On the other hand. less amount of injected mafic magma would have been responsible for mechanical mixing to produce the compositions of the porphyritic granite and the fined-grained granite. Therefore, it is considered that the granitic rocks in the Waryongsan area experienced magmas mingling resulting from the injection of more mafic magma into differentiating granitic magma, and that the compositional changes of the granitic rocks were ascribed to the degree of mingling between the two magmas.

A review of the effects of rock properties on waterjet rock cutting performance (암석물성이 워터젯 암석절삭 성능에 미치는 영향고찰)

  • Oh, Tae-Min;Park, Eui-Seob;Cheon, Dae-Sung;Cho, Gye-Chun;Joo, Gun-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.533-551
    • /
    • 2015
  • The rock fracturing during waterjet cutting is very complicated because rock is inhomogeneous and anisotropic, compared with artificial materials (e.g., metal or glass). Thus, it is very important to verify the effects of rock properties on waterjet rock cutting performance. Properties affecting the rock cutting efficiency have been variously described in the literature, depending on the experimental conditions (e.g., water pressure, abrasive feed rate, or standoff distance) and rock-types studied. In this study, a rock-property-related literature review was performed to determine the key properties important for waterjet rock cutting. Porosity, uniaxial compressive strength, and hardness of the rock were determined to be the key properties affecting waterjet rock cutting. The results of this analysis can provide the basic knowledge to determine the cutting efficiency of waterjet rock cutting technology for rock excavation-related construction.

Study on the Origin of Rapakivi Texture in Bangeojin Granite (방어진 화강암에 나타나는 라파키비 조직의 성인에 관한 연구)

  • 진미정;김종선;이준동
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.30-48
    • /
    • 2002
  • Phenocrysts with rapakivi texture are easily observed in Bangeojin granite. The rapakivi texture is composed of inner pinkish alkali feldspars and white-colored mantling plagioclase. The Bangeojin granite distinctively includes lots of mafic microgranular enclaves and can be divided into five rock facies: (1) enclave-poor granite (EPG); (2) enclave-rich granite (ERG); (3) mafic microgranular enclave (MME); (4) hybrid zone between mafic microgranular enclave and granite (HZ); (5) hybrid zone-like enclaves (HLE). The rapakivi textures are observed in these five rock facies with no difference in shape and size. Plagioclase mantle commonly shows dendritic texture that is an important indicator to know the rapakivi genesis. The mantling texture would indicate supercooling condition during magma solidification process. In addition, mafic microgranular enclaves would imply the magma mingling environment. The magma mixing process had possibly caused the mantling texture. An abundance of rapakivi phenocrysts in HZ and the influxing phenomenon of the phenocrysts into MME support that there were physical chemical exchanges during the mingling. And this model of the magma mixing/mingling explain well the heterogeneous distribution of the rapakivi phenocrysts in the five rock facies. Therefore the rapakivi textures in the Bangeojin granite would have been formed by magma mixing process.

Automatic Fracture Detection in CT Scan Images of Rocks Using Modified Faster R-CNN Deep-Learning Algorithm with Rotated Bounding Box (회전 경계박스 기능의 변형 FASTER R-CNN 딥러닝 알고리즘을 이용한 암석 CT 영상 내 자동 균열 탐지)

  • Pham, Chuyen;Zhuang, Li;Yeom, Sun;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.374-384
    • /
    • 2021
  • In this study, we propose a new approach for automatic fracture detection in CT scan images of rock specimens. This approach is built on top of two-stage object detection deep learning algorithm called Faster R-CNN with a major modification of using rotated bounding box. The use of rotated bounding box plays a key role in the future work to overcome several inherent difficulties of fracture segmentation relating to the heterogeneity of uninterested background (i.e., minerals) and the variation in size and shape of fracture. Comparing to the commonly used bounding box (i.e., axis-align bounding box), rotated bounding box shows a greater adaptability to fit with the elongated shape of fracture, such that minimizing the ratio of background within the bounding box. Besides, an additional benefit of rotated bounding box is that it can provide relative information on the orientation and length of fracture without the further segmentation and measurement step. To validate the applicability of the proposed approach, we train and test our approach with a number of CT image sets of fractured granite specimens with highly heterogeneous background and other rocks such as sandstone and shale. The result demonstrates that our approach can lead to the encouraging results on fracture detection with the mean average precision (mAP) up to 0.89 and also outperform the conventional approach in terms of background-to-object ratio within the bounding box.

Material Characteristics and Provenance Interpretation of the Stone Moulds for Bronze Artifacts from Galdong Prehistoric Site, Korea (완주 갈동유적 출토 청동기 용범의 재질특성 및 산지해석)

  • Lee, Chan-Hee;Kim, Ji-young;Han, Su-Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.387-419
    • /
    • 2005
  • Material characteristics and provenance interpretation of the raw materials for the stone moulds of bronze artifacts excavated in Galdong Prehistoric site were studied. The stone moulds are made of igneous hornblendite with coarse-grained holocrystalline textures. The surface color shows greenish grey to dark green with greasy luster. The value of magnetic susceptibility of the moulds ranges from 19.2 to 71.0 (mean ; $39.2{\times}10^{-3}$ SI unit).High value of magnetic susceptibility indicates high contents of magnetite as a ferromagnetic mineral and the wide range of the values are due to heterogeneous distribution of magnetite. These are characteristics of basic igneous rocks. The rock-forming minerals of the moulds mainly consist of amphibole, plagioclase and biotite. Pyroxene, chlorite and opaque minerals are also rarely present. A large quantity of carbon was detected on the dark black crust near the surface of the moulds by quantitative analysis. Geological field survey was carried out to identify a source of the raw materials of the stone moulds around Galdong site. Hornblendite or gabbroic rocks being similar to the moulds forming rock occur at Daeseongri, Sikcheonri and Gyodongri in Jangsoo, and Illdaeri in Namwon about 50 kilometers away from the site in a straight line. They have similarity with the moulds forming rock in magnetic susceptibility ranging from 16.1 to 72.4 (mean ; $39.9{\times}10^{-3}$ SI unit). Among those hornblendite or gabbroic rocks, one in Jangsoo area is the most similar to the moulds forming rock on the basis of petrological and mineralogical characteristics. Comparing normalized patterns of major, minor, rare earth and immobile elements contents of the moulds to them of hornblendite in Jangsoo area, geochemical evolution trend and behavior characteristics show affinities between them. It suggests that the moulds forming rock and hornblendite in Jangsoo area have been originated from cogenetic magma. This hornblendite is easy to engrave an inscription or detail graphics on the surface because of its softness, and has good thermal conductivity. Hornblendite in Sikcheonri, Jangsoo is particularly produced and used for stone wares until the present day. Therefore, it is probable that the stone materials of the moulds has been imported from Daeseongri, Sikcheonri and Gyodongri in Jangsoo area. However, it cannot be completely excluded the possibility that the material of the moulds was supplied from Illdaeri in Namwon area appearing the same type of hornblendite on a small outcrops. It is necessary to carry out further archaeological studies to identify several possibilities of migration process of raw materials.

The homogenization analysis for permeability coefficients by fracture aperture variations (균질화 해석법을 이용한 단열 간극변화에 따른 투수계수 해석)

  • 채병곤
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.47-60
    • /
    • 2004
  • The permeability coefficients were calculated by the homogenization analysis method with sufficient consideration of fracture geometry dependent on aperture change. According to the results of aperture measurements using a confocal laser scanning microscope, apertures on each measuring point display different magnitudes, indicating that fracture walls can not be assumed as parallel feature. After construction of fracture model based on the aperture values measured on each pressure level, the homogenization analysis was conducted to compute permeability coefficients. The calculated permeability coefficients distribute in the ranges of $10^{-1}~10^{-3}cm/sec$. Most of the specimens show decreasing permeability coefficients with the increase of the applied pressure. However, the decreasing rates of permeability coefficients do not show a constant trend on each pressure level. This phenomenon is well matched to the observation results of Chae et al. (2003). It proves that aperture change strongly influences on permeability characteristics. Three sections of each specimen have all different values of permeability coefficient. It suggests that the variation of permeability coefficient depends sensitively on aperture magnitudes and characteristics of fracture geometry. It is very important to consider accurate fracture geometries for analysis of permeability characteristics in rock fractures bearing different aperture distribution. Therefore, it needs to consider sufficiently the fracture geometries for calculating the permeability coefficients of fractures.