• Title/Summary/Keyword: 암석권

Search Result 126, Processing Time 0.024 seconds

Neogene Uplift in the Korean Peninsula Linked to Small-scaled Mantle Convection at Singking Slab Edge (소규모 맨틀 대류에 의한 한반도의 신제3기 이후 융기 운동)

  • Shin, Jae-Ryul;Sandiford, Mike
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.3
    • /
    • pp.328-346
    • /
    • 2012
  • This study provides quantitative constraints on Neogene uplift in the Korean peninsula using onshore paleo-shoreline records and seismic data. The eastern margin of Northeast Asia including Korea sits in the back-arc system behind the Western Pacific Subduction Zone, a complex trench triple junction of the Philippine Sea, Pacific, and Eurasian (Amurian) plates. An analysis of seismic data in the subduction zone shows that the pattern of uplift in the peninsula mirrors the extent of deep seismicity in subducting Pacific plate beneath. Combined with previous tomographic studies it is proposed that uplift is partly driven by asthenospheric upwelling caused by a sinking slab during the Neogene. In addition, the SHmax orientations of E-W and N-S trends in the peninsula are consistent with the prevailing in-situ stress fields in the eastern Eurasian continent generated by various plate boundary forces. The uplift in Korea during the Late Neogene is attributed, in part, to lithospheric failure relating to faulting movements, thus providing a link between dynamic effects of mantle upwelling at sinking slab edge and lithospheric responses driven by plate boundary forces.

  • PDF

Related Conception s to Earth System and Applying of Systems Thinking about Carbon Cycle of the Preservice Teachers (예비교사들의 탄소 순환에 대한 지구시스템의 관련개념과 시스템 사고의 적용)

  • Jeong, Jin-Woo;kyung, Jai-Bok;Koh, Yeong-Koo;Youn, Seok-Tae;Kim, Hai-Gyoung;Oh, Kang-Ho;Moon, Byoung-Chan
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.684-696
    • /
    • 2004
  • Using six preservice teachers as subjects, this was purpose to research about concepts in understanding carbon cycle, which of concepts were related to the conception of the system, and finally whether or not the systems thinking was sufficiently around carbon cycle. To achieve this study purpose , an instrument related to carbon cycle was developed and administered to the six teachers. The study found that a total of 42 conceptions within the system were concepts related to carbon cycle. The consisted of 15 conceptions in atmosphere, 11 in atmosphere 9 in hydrosphere, and 7 in lithosphere. In aspect of applying the system thinking, 4 subjects who couldn't compose the feedback loop in their causal map failed to apply this type of thinking. The other two who applied systems thinking had 2 and 1 feedback loop each, in their causal maps. But, one of the feedback loop from the subject who made two was based on unscientific reasoning. As a result, the subjects had lower understanding of concepts related to carbon cycle in lithosphere than in atmosphere, atmosphere, and hydrosphere. Futhermore, the subjects' application of the earth systems thinking on carbon was at a low standard.

Rock Mechanics Studies at the KAERI Underground Research Tunnel for High-Level Radioactive Waste Disposal (고준위폐기물 처분연구를 위한 지하처분연구시설에서의 암석역학 관련 연구)

  • Kwon, S.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.43-55
    • /
    • 2007
  • An underground research tunnel, KURT, was constructed at Korea Atomic Energy Research Institute, for various in situ validation experiments related to the development of a high-level radioactive waste disposal system. KURT, which has length of 255 m (access tunnel 180 m and research modules 75 m) and size of $6m{\times}6m$ was excavated in a cryatalline rock mass. In the KURT project, different rock mechanics studies had been carried out during the concept design, site characterization, detailed design, and construction stages. From the geophysical survey, borehole investigation, and rock property tests in laboratory and in situ, the rock and rock mass properties required for the mechanicsl stability analysis of KURT could be achieved and used for the input parameters of computer simulations. In this paper, important results from the rock mechanics studies at KURT and the three-dimensional mechanical stability analysis will be introduced.

Case Studies of Indirect Coupled Behavior of Rock for Deep Geological Disposal of Spent Nuclear Fuel (사용후핵연료 심층처분을 위한 암석의 간접복합거동 연구사례)

  • Hoyoung, Jeong;Juhyi, Yim;Ki-Bok, Min;Sangki, Kwon;Seungbeom, Choi;Young Jin, Shin
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.411-434
    • /
    • 2022
  • In deep geological disposal concept for spent nuclear fuel, it is well-known that rock mass at near-field experiences the thermal-hydraulic-mechanical (THM) coupled behavior. The mechanical properties of rock changes during the coupled process, and it is important to consider the changes into the analysis of numerical simulation and in-situ tests for long-term stability evaluation of nuclear waste disposal repository. This report collected the previous studies on indirect coupled behaviors of rock. The effects of water saturation and temperature on some mechanical properties of rock was considered, while the change in hydraulic conductivity of rock due to stress was included in the indirect coupled behavior.

Numerical Simulation of Radial Strain Controlled Uniaxial and Triaxial Compression Test of Rock Using Bonded Particle Model (입자결합모델을 이용한 횡방향 변형률 제어 하에서의 암석의 일축 및 삼축압축시험의 수치적 모사)

  • Lee, Chang-Soo;Kwon, Sang-Ki;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.216-224
    • /
    • 2011
  • In this study, Class II behavior of rock failure process under uniaxial and biaxial compression has been numerically simulated using bonded particle model. Class II behavior of rock was simulated by radial strain controlled uniaxial and biaxial compression tests using a suggested method of ISRM. Micro-parameters used in the simulation were determined based on the laboratory uniaxial compression tests carried out at ${\"{A}}sp{\"{o}}$ Hard Rock Laboratory, Sweden. Class II behavior of ${\"{A}}sp{\"{o}}$ rock was effectively simulated using newly proposed numerical technique in this study, and the results of numerical simulations show good similarity with the complete stress-strain curves for Class II behavior obtained from the laboratory tests.

An Estimation of the Excavation Damaged Zone at the KAERI Underground Research Tunnel (한국원자력연구원 내 지하연구시설에서의 굴착손상영역 평가)

  • Lee, Chang-Soo;Kwon, Sang-Ki;Choi, Jong-Won;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.359-369
    • /
    • 2011
  • In this study, physical, mechanical, and thermal properties of rock samples were investigated to estimate the Excavation Damaged Zone (EDZ) developed during the construction of the KAERI Underground Research Tunnel. The average porosity in the EDZ was increased by about 140%. The average wave velocity, Young's modulus, and uniaxial compressive strength in the EDZ were decreased by about 11, 37, and 16%, respectively. And the thermal conductivity in the EDZ was decreased by about 20%. From the laboratory tests, the EDZ size could be estimated to be around 1.1-2.4 m.

공학지질도 작성

  • 김원영
    • Proceedings of the KSEG Conference
    • /
    • 2004.03a
    • /
    • pp.13001-13021
    • /
    • 2004
  • 공학지질도(Engineering geology map)는 토목공사의 예비단계에서 필요한 지질자료를 도면에 표시하여 지질공학 계획(Engineering geological plan)의 수립과 토목설계 정보를 제공 위하여 작성하는 특수지질도이다. (Report by the geological society engineering group working party, 1972). 공학지질도에는 지질공학, 토목 또는 건축 기술자들이 필요로 하는 지질정보를 수록하기 때문에 기존의 지질도(Geological map)와는 다르게 작성한다. 즉, 지질도는 암석의 광물조성, 석기 (texture), 층서, 지질구조 등의 지질학적 분석을 통하여 지각의 생성 메카니즘과 지구의 역사를 규명하는 것이 궁극적 작성 목표이다. 따라서 지질도에는 공학기술자들이 필요로 하는 암석과 토층의 물리적/공학적 특성이나 지하수에 대한 정량적 정보 등이 수록되지 않을 뿐 아니라 공학기술자들에게 필요한 인간 생활권 부분인 지표와 천부의 지질학적 특성이 제외되는 경우가 많다. (중략)

  • PDF

Mechanical Properties of Rocks in Dokdo (독도 암석의 역학적 특성에 관한 연구)

  • Park, Chan;Jung, Yong-Bok;Song, Won-Kyong;SunWoo, Choon;Kim, Bok-Chul;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.69-79
    • /
    • 2008
  • Dokdo is a volcano edifice originating from an oceanic island that was formed around 3 million to 2.2 million years ago, and it consists of Dongdo(eastern island) and Seodo(western island). Even though Dokdo is a small volcanic island, Dokdo has infinite potential value and significant economic, social, scientific, and technical aspects due to its resources, ecological and territorial value. In addition, it is of national interest with regards to the dispute with Japan over the dominium of Dokdo. A need to evaluate the ground stability of Dokdo, especially in Dongdo, has been seriously raised recently due to the various cracks caused by the progressive weathering and corrosion. This study dealt with the geology and geological layers of Dokdo and identified the status of ground cracks as the previous research to evaluate the ground stability of zones of concern in Dongdo. Also, this study analyzed the relationships between physical and mechanical properties with rock types. The results showed that the values of rock properties in Dokdo are lower contrary to the general rocks in Korea, and tuff was especially affected by the weathering and corrosion.

Silica Enrichment in Mantle Xenoliths Trapped in Basalt, Jeju Island: Modal Metasomatic Evidences (제주도 맨틀포획암내의 실리카 부화작용: 모달 교대작용의 증거)

  • Yu, Jae-Eun;Kim, Sun-Woong;Yang, Kyoung-Hee
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.61-75
    • /
    • 2011
  • Mantle-derived xenoliths, corresponding to spinel harzburgite and lherzolite in alkali basalts from Jeju Island, are metasomatized to various extents. They contain distinctive secondary orthopyroxene, forming corona or poikilitic textures. It clearly indicate that this secondary orthopyroxene has been produced at the expense of olivine along the grain boundaries and margins, suggesting silica-enriched metasomatic melt infiltrated through grain boundaries. Based on the geotectonic characteristics of Jeju Island and textural characteristics and major elements composition of mantle xenoliths, it is suggested that the silica-enriched melt/fluid could have derived from the ancient subducted slab, possibly in the mantle wedge, implying that the high $SiO_2$ activity in the lithospheric upper mantle beneath Jeju Island at that time.