• Title/Summary/Keyword: 암반 특성

Search Result 1,298, Processing Time 0.041 seconds

Dynamic Numerical Modeling of Subsea Railway Tunnel Based on Geotechnical Conditions and Seismic Waves (지반조건과 지진파를 고려한 해저철도 터널의 동적 수치 모델링)

  • Kwak, Chang-Won;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.69-86
    • /
    • 2022
  • The railway is widely used to transport passengers and freight due to its punctuality and large transport capacity. The recent remarkable development in construction technology enables various subsea railway tunnels for continent-continent or continent-island connectivity. In Korea, design and construction experience is primarily based on the successful completion of the Boryeong subsea tunnel (2021) and the Gadeok subsea tunnel (2010). However, frequent earthquakes with diverse magnitudes, globally induced and continuously increased the awareness of seismic risks and the frequency of domestic earthquakes. The effect of an earthquake on the subsea tunnel is very complicated. However, ground conditions and seismic waves are considered the main factors. This study simulated four ground types of 3-dimensional numerical models, such as soil, rock, composite, and fractured zone, to analyze the effect of ground type and seismic wave. A virtual subsea railway shield tunnel considering external water pressure was modeled. Further, three different seismic waves with long-term, short-term, and both periods were studied. The dynamic analyses by finite difference method were performed to investigate the displacement and stress characteristics. Consequently, the long-term period wave exhibited a predominant lateral displacement response in soil and the short-term period wave in rock. The artificial wave, which had both periodic characteristics, demonstrated predominant in the fractured zone. The effect of an earthquake is more noticeable in the stress of the tunnel segment than in displacement because of confining effect of ground and structural elements in the shield tunnel. 

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer (벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개)

  • Jaewon Lee;Jung-Woo Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.228-243
    • /
    • 2023
  • Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.

Seasonal Change Analysis of Groundwater in Nakdong Riverside Greenhouse Complex Using Groundwater Monitoring (지하수관측을 이용한 낙동강변 시설농업단지 지하수의 계절적 변화 분석)

  • Baek, Mi Kyung;Shin, Hyun Chae;Kim, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.283-283
    • /
    • 2020
  • 국가의 논의 타작물 재배 권장 정책과 농한기 수익을 위해서 동절기에도 농사가 가능한 시설농업이 발달했으며, 1990년 초부터 재배면적이 증가하여 2000년에는 10만 ha를 넘어섰고, 2018년에는 80만ha의 규모를 보이고 있다(농사로, 2019). 시설농업단지의 동절기 난방을 위한 에너지원으로 화석연료와 전기열원을 사용하고 있고, 특히 강변의 경우 지하수를 난방 열원으로 사용가능해 수막재배를 이용한 대규모 시설단지가 발달함에 따라 지하수의 이용량이 증가하고, 2015년 농업용 지하수 이용량은 연간 20억 톤에 이른다(GIMS, 2019). 난방이 필요한 동절기에 수막용수를 위한 지하수 이용량이 급증하여 계절적인 수위변화를 보이며, 특히 강변의 대규모 시설농업단지의 지하수의 부족현상이 빈번히 발생하는 실정이다(송성호, 2017). 본 연구지역은 낙동강 하구댐 설치 전만조 시 해수의 유입으로 암반지하수의 심도가 증가할수록 EC가 증가하는 특성을 보이는 곳으로, 지하수의 이용량이 급증하는 동절기에 특히 급격히 증가하여 지하수의 안정적인 수질관리를 위해 염분변화의 관리가 필요한 지역이다. 지하수의 계절적인 변화를 위해 시설농업단지내에 지하수 관측정이 설치되어 관측되고 있으며 본 연구에서는 관측정의 2013년 1월~2019년 1월까지 지하수의 EC변화를 관측하였다. 지하수의 수위(GL.m), 온도, EC를 1시간 주기로 관측하여 계적적인 변화를 분석하였고, EC의 증가가 큰 곳은 심도별로 센서(다중심도)를 설치하여 염도의 변화를 관측하였다. 지하수성분의 지질학적 기원분석을 위한 양음이온 분석을 연 1회 실시하였다. 또한 관측정의 심도별 변화를 알기 위해 동일지역에 충적, 암반 관측정을 따로 설치하고 관측하여 지표수와 지하수의 심도별 영향의 차이를 분석하였다. 동일지역의 관측결과 평균 5m이하의 수위변화를 보이나, 5m 이상의 수위변동을 보이는 관측망은 15년 14개소 17년 19개소로 증가추세를 보이며, 이는 주로 밀집된 시설하우스 단지의 수막재배를 위한 겨울철 지하수 사용량 증가가 원인인 것으로 판단된다. 본 연구지역은 강변지역에 밀집된 시설하우스단지의 동절기 수막재배를 위한 지하수 과다 사용으로 수위급감 및 수량부족현상이 반복되고 있어, 예방과 대책강구를 위해 지표수의 함양과 지하수사용량의 상관관계 분석과 자료축적 및 추가연구를 위한 장기관측이 요구된다.

  • PDF

Review of In-situ Installation of Buffer and Backfill and Their Water Saturation Management for a Deep Geological Disposal System of Spent Nuclear Fuel (국외 사례를 통한 사용후핵연료 심층처분시스템 완충재 및 뒤채움재의 현장시공 및 포화도 관리 기술 분석)

  • Ju-Won Yun;Won-Jin Cho;Hyung-Mok Kim
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.104-126
    • /
    • 2024
  • Buffer and backfill play an essential role in isolating high-level radioactive waste and retard the migration of leaked radionuclides in deep geological disposal system. A bentonite mixture, which exhibits a swelling property, is considered for buffer and backfill materials, and excessive groundwater inflow from surrounding rock mass may affect stability and efficiency of their role as an engineered barrier. Therefore, stringent quality control as well as in-situ installation management and inflow water constrol for buffer and backfill are required to ensure the safety of deep disposal facilities. In this study, we analyzed the design requirements of buffer and backfill by examining various laboratory tests and a field study of the Steel Tunnel Test at the Äspö Hard Rock Laboratory in Sweden. We introduced how to control the quality of buffer and backfill construction in-field, and also presented how to handle excessive groundwater inflow into disposal caverns, validating the groundwater retention capacity of bentonite pellets and the effectiveness of geotexile use.

Microbial Community Structures Related to Arsenic Concentrations in Groundwater Occurring in Haman Area, South Korea (함안지역 지하수의 비소(As) 함량과 미생물 군집 특성과의 연관성 검토)

  • Kim, Dong-Hun;Moon, Sang-Ho;Ko, Kyung-Seok;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.655-666
    • /
    • 2020
  • This study evaluated the characteristics of arsenic production in groundwater through microbial community analysis of groundwater contaminated with high arsenic in Haman area. Groundwater in Haman area is contaminated with arsenic in the range of 0-757.2 ㎍/L, which represents the highest arsenic contamination concentration reported in Korea as natural groundwater pollution source. Of the total 200 samples, 29 samples (14.5%) showed higher arsenic concentration than that of 10 ㎍/L, which is the standard for drinking water quality, and 8 samples (4%) found in wells with 80-100 m depth were above 50 ㎍/L. In addition, seven wells with arsenic concentration more than 100 ㎍/L located in the northern part of Haman. As a result of microbial community analysis for high arsenic-contaminated groundwater, the microbial community compositions were significantly different between each sample, and Proteobacteria was the most dominant phyla with an average of 61.5%. At the genus level, the Gallinonella genus was predominant with about 12.8% proportion, followed by the Acinetobacter and Methermicoccus genus with about 7.8 and 7.3%, respectively. It is expected that high arsenic groundwater in the study area was caused by a complex reaction of geochemical characteristics and biogeochemical processes. Therefore, it is expected that the constructed information on geochemical characteristics and microbial communities through this study could be used to identify the origin of high arsenic groundwater and the development of its controlling technology.

A Study on Acoustic Emission and Micro Deformation Characteristics During Biaxial Compression Experiments of Underground Opening Damage (이축압축실험을 통한 지하공동 손상시 음향방출 및 미소변형 특성 연구)

  • Min-Jun Kim;Junhyung Choi;Taeyoo Na;Chan Park;Byung-Gon Chae;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.169-184
    • /
    • 2024
  • This study investigates acoustic emission (AE) and micro-deformation characteristics of circular openings through biaxial compression experiments. The experimental results showed a significant increase in the frequency, count, energy, and amplitude of AE signals immediately before damage occurred in the circular opening. The differences in frequency and count between before and after damage initiation were significantly pronounced, indicating suitable factors for identifying damage occurrence in circular openings. The results for digital image correlation (DIC) technique revealed that micro-deformation was concentrated around the openings, as evidenced by the spatial distribution of strain. In addition, spalling was observed at the end of the experiments. The AE and micro-deformation characteristics presented in this study are expected to serve as fundamental data for evaluating the stability of underground openings and boreholes for deep subsurface projects.

Plant Community Structure of Daetjae(hill)~Baekbongryung(ridge), the Baekdudaegan Mountains (백두대간 댓재에서 백봉령구간 마루금의 식물군집구조 특성)

  • Lee, Soo-Dong;Hong, Suk-Hwan;Kim, Ji-Suk
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.5
    • /
    • pp.719-729
    • /
    • 2012
  • Baekdudan has 670km long within South Korea, so the study for detail vegetation characteristics is needed. In this study, we surveyed the plant community structure from Daetjae to Baekbongryung for the next restoration and management plan. We designated 40 quadrats ($10m{\times}10m(100m^2)$ for this study. As a result of TWINSPAN, plant community separated 8 different communities such as Abies koreana comm., Pinus densiflora comm., Quercus mongolica comm. and Larix kaempferi comm. etc. Abies koreana comm. and Pinus densiflora comm. which is mainly located in the mountain ridge and near rocks are needed avoidance from the competition with Quercus mongolica comm. The possibility of atrophy of these communities is to be high, the protection is needed. Species diversity index was between 0.8046~1.1283. Most communities have multi-layer structure and have the ecological value of protection.

A Study on the Support Characteristics of the High Strength Lightweight Steel Pipe Rockbolt (경량 고강도 강관 록볼트의 지보특성에 관한 연구)

  • Kim, Jong Woo;Kim, Myeong Kyun;Kim, Dong Man;Kim, Kyung Hun;Baek, Jae Wook
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.395-403
    • /
    • 2014
  • In this study, a steel pipe type rockbolt manufactured from special material was developed which has high strength and lightweight characteristics. Achievement of grout filling between rockbolt and hole wall was investigated through grout injection tests. Yield force of the developed rockbolt was also examined through tensile tests, which was compared with that of the deformed bar type rockbolt. In addition, the strength and elongation properties of the developed rockbolt were investigated through pull-out tests at three domestic sites showing different RMR classes. It is finally supposed that the developed rockbolt can be suitable for the permanent tunnel support because it has high strength and high durability rather than deformed bar type rockbolt.

Characterization of Fracture Transmissivity for Groundwater Flow Assessment using DFN Modeling (분리단열망개념의 지하수유동해석을 위한 단열투수량계수의 정량화 연구)

  • 배대석;송무영;김천수;김경수;김증렬
    • The Journal of Engineering Geology
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 1996
  • The fracture transmissivity($T_f$) is the most important parameter of fracture in assessing groundwater flow in fractured rock masses by using the DFN(Discrete Fracture Network) modeling. $T_f$, the most sensitive parameter m DFN modeling, is dependent upon aperture, size and filling characteristics of each fracture set. In the field test, the accuracy of $T_f$ can be increased with Borehole Acoustic Scanning (Televiewer) and Fixed Interval Length(FIL) test in constant head. $T_f$ values measured from FIL test was modified and estimated by each fracture set on the basis of the Cubic Law and the information of aperture and filling characteristics obtained from Televiewer. The modified $T_f$ results in the increase of confidence and reliability of modeling results including the amount of tunnel inflow.And, this approach would reduce the uncertaintity of the assessment for groundwater flow in fractured rock masses using the DFN modeling.

  • PDF

Prediction of Ground Vibration According to the Priming Location (폭약의 기폭위치에 따른 지반진동 예측)

  • Kim, Seung-Eun;Ryu, Pog-Hyun;Kang, Choo-Won;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.69-75
    • /
    • 2010
  • Excavations by blasting in urban area have caused lots of complaints. Hence, special attentions need to be paid to controlling the ground vibrations in designing blasting for those areas. In this study, among the various parameters that can affect the propagation characteristics of ground vibrations, the effect of the priming location of explosive on the ground vibration level was studied for two types of emulsion explosives that had different detonation velocities. Three priming locations of top, middle, and bottom were considered in a charged hole. In the experiment on the effect of detonation velocity, the ground vibration caused by the explosive with a lower detonation velocity showed larger attenuation in the amplitude. The priming locations also affected the ground vibrations levels. The ground vibration level produced from middle priming was found to be larger than the other priming methods under the same blast conditions, but the attenuation of amplitude was also larger in this case. In contrast, the ground vibration level from bottom priming was not larger than the middle priming, but the attenuation was smaller so that the ground vibration was detected at a longer distance.