• Title/Summary/Keyword: 암반 불연속면

Search Result 287, Processing Time 0.026 seconds

Analysis of Rock Slope Behavior Utilizing the Maximum Dip Vector of Discontinuity Plane (불연속면의 최대경사벡터를 활용한 사면거동해석)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.332-345
    • /
    • 2019
  • Maximum dip vector of individual joint plane, which can be uniquely defined on the hemispherical projection plane, has been established by considering its dip and dip direction. A new stereographic projection method for the rock slope analysis which employs the maximum dip vector can intuitively predict the failure modes of rock slope. Since the maximum dip vector is uniquely projected on the maximum dip point of the great circle, the sliding direction of discontinuity plane can be recognized directly. By utilizing the maximum dip vector of discontinuity both the plane sliding and toppling directions of corresponding blocks can be discerned intuitively. Especially, by allocating the area of high dip maximum dip vector which can form the flanks of sliding block the potentiality for the formation of virtual sliding block has been estimated. Also, the potentiality of forming the triangular-sectioned sliding block has been determined by considering the dip angle of joint plane the dip direction of which is nearly opposite to that of the slope face. Safety factors of the different-shaped blocks of triangular section has been estimated and compared to the safety factor of the most hazardous block of rectangular section. For the wedge analysis the direction of crossline of two intersecting joint planes, which has same attribute of the maximum dip vector, is used so that wedge failures zone can be superimposed on the stereographic projection surface in which plane and toppling failure areas are already lineated. In addition the maximum dip vector zone of wedge top face has been delineated to extract the wedge top face-forming joint planes the orientation of which provides the vital information for the analysis of mechanical behavior of wedge block.

A Survey Tool for the Measurements of the Rock Parting Surfaces (암반의 불연속면 배열을 측량하는 원격 영상측량기)

  • 황상기;임유진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.697-704
    • /
    • 2000
  • This study presents methodology and tools for remote measurement of the orientation of the rock parting surfaces. Two close circuit video camera capture the pictures of a rock excavation surface while a laser beam scans the surface. Positions of the laser beams in the two digital images are recognized by image processing. Using the stereoscopic concept, three dimensional coordinations of the rock surface and the orientation of the rock parting planes are calculated. Point, cross and line type laser beams are tested for better image processing results and measurement accuracy of the coordinates. According to a simple accuracy test, cross beam show better results than the point beam. However, line beam show more promising results for the measurement of the rock parting surfaces.

  • PDF

Prediction of Discontinuity and Determination of Rock Property ahead of Tunnel Face by VSP application (수직 탄성파탐사를 응용한 터널 전방의 불연속면 예측과 암반 물성 파악)

  • 남기천;이진무;차성수
    • Tunnel and Underground Space
    • /
    • v.5 no.3
    • /
    • pp.214-222
    • /
    • 1995
  • Geological events which are undetected by the surface geophysical or geological survey phase can cause many problems, especially when the tunnel is excavated by TBM. To detect the geological events ahead of tunnel face, a seismic method applied from VSP method is used. Generally uniaxial geophone has been used in surface seismic survey. But this time, triaxial geophone is used to reduce the noise of tunnel wave. DME(Dip moveout Enhancement) filter and diffraction stack method are used. Applying these techniques to the road tunnel in construction, it is proved that the geological events ahead of tunnel face is fairly well predicted. From the seismic trace, Vp and Vs which are related to the rock property can be also obtained. Rock property and proper support design can be dedced from these parameters.

  • PDF

Geometric Analysis of Fracture System and Suggestion of a Modified RMR on Volcanic Rocks in the Vicinity of Ilgwang Fault (일광단층 인근 화산암 암반사면의 단열계 기하 분석 및 암반 분류 수정안 제시)

  • Chang, Tae-Woo;Lee, Hyeon-Woo;Chae, Byung-Gon;Seo, Yong-Seok;Cho, Yong-Chan
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.483-494
    • /
    • 2007
  • The properties of fracture system on road-cut slopes along the Busan-Ulsan express way under construction are investigated and analyzed. Fracture spacing distributions show log-normal form with extension fractures and negative exponential form with shear fractures. Straight line segments in log-log plots of cumulative fracture length indicate a power-law scaling with exponents of -1.13 in site 1, -1.01 in site 2 and -1.52 in site 3. It is likely that the stability and strength of rock mass are the lowest in site 1 as judged from the analyses of spacing, density and inter-section of fractures in three sites. In contrast, the highest efficiency of the fracture network for conducting fluid flow is seen in site 3 where the largest cluster occupies 73% through the window map. Based on the field survey data, this study modified weighting values of the RMR system using a multiple regression analysis method. The analysis result suggests a modified weighting values of the RMR parameters as follows; 18 for the intact strength of rock; 61 for RQD; 2 for spacing of discontinuities; 2 for the condition of discontinuities; and 17 for ground water.

Shear Behavior of Rough Granite Joints Under CNS Conditions (일정 수직강성 조건하 화강암 인장절리의 전단거동 특성)

  • Park, Byung-Ki;Lee, Chang-Soo;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.203-215
    • /
    • 2007
  • Stability and mechanical deformation behavior of rock masses are highly dependent on the mechanical characteristics of contained discontinuities. Therefore, mechanical characteristics of the discontinuities should be considered in the design of tunnel and underground structures. In this study, direct shear tests for rough granite joints were carried out under constant normal stiffness conditions. Effects of initial normal stress, shear velocity, and surface roughness on the characteristics of shear strength and deformation behaviors were examined. Results of shear testing under constant normal stiffness conditions reveal that shear behaviors could be classified into two categories, based on the amount of decrease in shear stress at the Int peak shear stress. With initial normal stiffness increasing, it turned out that shear displacement at peak stress and the first peak shear stress increased, however friction angle and friction coefficient showed decrease. In case of shear stiffness and average friction coefficient, it turned out that they are not dependent on the initial normal stress. Minor effects of shear velocity on rough joints were observed in several shear quantities. However, the effects of shear velocity were insignificant regardless of the normal stress increase. Change of shear strength and deformation characteristics on joint roughness were examined, however, it turned out that the variations were attributed to deviation of shear test specimens.

Stability Analysis of Toppling Failure in Rock Slopes (암반사면의 전도파괴에 대한 안정해석)

  • 이명재;이인모
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.55-66
    • /
    • 1998
  • The purpose of this paper is to formulate and apply the stability analysis of toppling failure by considering the variation of discontinuity characteristics, slope geometry, and loading conditions. The stability condition on toppling failure of rock slope is mainly iuluenced by the dip angle $\alpha_B$ and H/t ratio. In order to check toppling failures in design, the stability charts composed of dip angle $\alpha_B$ versus H/t ratio have been constructed in the paper. In general, smaller dip angle $\alpha_B$ and smaller dip angle $\alpha_B$ and smaller H/T ratio give safer condition. The suggested curves change rapidly at the chitical point around the sone, H/t=4~6. The stable zone in stability charles becomes smaller due to step angle $\data$.

  • PDF

A Case Study on the Slope Collapse and Reinforcement Method of the Phyllite Slope (천매암 지역에서의 비탈면 붕괴 원인규명 및 보강대책 사례연구)

  • Cho, Younghun;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.83-93
    • /
    • 2010
  • The purpose of this study is to present emergency rehabilitation, cause and the countermeasure of reinforcement about reinforced retaining wall and the slope collapse of the phyllite ground. The study area is broken easily because this area has rock mass discontinuity such as stratification, foliation, joint and fold. And this area consists of the ground where it happens easily to the failure of structure like reinforced retaining wall because of the phyllite ground sensitive to weathering. Counterweight fill in front of reinforced retaining wall was performed as emergency rehabilitation about displacement of reinforced retaining wall and the failure at the rear of slope on phyllite ground. After that, additional displacement didn't occur. Boring and geophysical exploration were launched to present emergency rehabilitation and develop the long-term method of reinforcement. This could grasp anticipated range of the failure section and identify internal and external factors of the cause of the slope collapse. Several methods of reinforcement were suggested by conducting the numerical analysis. When conducting design and construction of major structures at the ground which has complex discontinuities, the precise site investigation should be conducted. During construction, immediate action for over-displacement should be taken by performing the periodic measurement.

The effect of the shape factor of an underground cavern in good rock conditions on its stability by 2D discontinuum analysis (2차원 불연속체 해석에 의한 양호한 암반 내의 지하공동 형상비가 안정성에 미치는 영향 검토)

  • You, Kwang-Ho;Jung, Ji-Suug
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.189-198
    • /
    • 2009
  • Recently the concern about the construction of underground structures such as oil and food storage caverns is increasing in Korea and abroad. The stability of those underground caverns is greatly influenced by shape factor and the size of excavation area as well as the joint conditions. In this study, therefore, the effect of the shape factor of an underground cavern on its stability was analyzed in terms of safety factor. To this end, four different shape factors of a cavern excavated in good rock conditions were investigated and sensitivity analyses were performed based on overburden, lateral earth pressure coefficient, joint spacing, properties, and orientation. The stability of a cavern is evaluated in terms of safety factor estimated numerically based on the shear strength reduction technique. In future, this study is expected to be helpful in designing and evaluating the stability of caverns excavated in discontinuous rock masses.

Assessment of elastic-wave propagation characteristics in grouting-improved rock mass around subsea tunnels (해저터널 주변 그라우팅 보강암반의 탄성파 전달특성 평가)

  • Kim, Ji-Won;Hong, Eun-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • Grouting is frequently used before the construction of subsea tunnels to mitigate problems that can occur in weak ground zones such as joints, faults or unconsolidated settlements during construction. The grout material injected into rock mass often flows through the discontinuities present in the host rock and hence, joint properties such as its distribution, roughness and thickness greatly affect the properties of grouting-improved rocks. The grouting-improved zones near subsea tunnels are also subjected to high water pressures that can cause long-term weathering in the form of changes in grout microstructure and crack formation and lead to subsequent changes in ground properties. Therefore, an assessment method is needed to accurately measure changes in the grouting-improved zones near subsea tunnels. In this study, the elastic wave propagation characteristics in grouting-improved rocks were tested for various axial stress levels, curing time, joint roughness and thickness conditions under laboratory conditions and the results were compared with wave velocity standards in different Korean rock mass classification systems to provide a basis for inferring improvement in grouted rock-mass.

Underground Mine Design and Stability Analysis at a Limestone Mine (석회석광산의 갱내채광설계 및 안정성평가)

  • Koo, Chung-Mo;Jeon, Seok-Won;Lee, In-Woo
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.243-251
    • /
    • 2008
  • Recently, the mining methods are changing from surface mining to underground mining because of the increment of the environmental issues and legal regulations. Therefore, the stability of underground openings is a major concern for the safety and productivity of mining operations. In this paper, a survey of structural geology and discontinuities were carried out at a limestone mine. The relevant mechanical properties of rocks were determined by the laboratory tests and rock mass classifications (RMR and Q-system) for the mine design and input data for the stability analysis. The dimensions of unsupported span for underground openings and pillar were decided based on the RMR values of rock mass classifications. The stability analysis for the suggested mine design was examined through the empirical methods (stability graph method and critical span curve) and 3-D numerical analysis (Visual-FEA).