• Title/Summary/Keyword: 암반 굴착

Search Result 604, Processing Time 0.027 seconds

Stability Analysis by FEM on New Large Shiplock Slopes in Yangtze River (유한요소법에 의한 양쯔강 신설 대수로사면 안정검토)

  • Chen, Jian;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.20-27
    • /
    • 2006
  • 중국 Three Gorges Project의 대수로사면 안정성은 설계와 시공측면에 있어 주요 관심사가 되었다. 사면 굴착으로 인한 제하과정에서 암반은 역학적으로 불안정한 상태에 놓인다. 본 논문은 FEM(2D-3D)를 이용하여 단층 암반 굴착으로 인한 암반사면의 안정성을 평가하였다. 해석결과 굴착 후 수로사면의 양측 수직벽과 분리울타리의 중간 상부에서 인장응력과 전단손상영역이 주로 발생하였다. 해석결과를 토대로 대규모 사면활동에 대한 안정성을 확인하였으나 시공단계에서 국부적 사면활동을 방지하기 위한 록볼트와 록앵커 등의 보강이 필요한 것으로 검토되었다.

  • PDF

Study on Numerical Analysis of Estimating Elastic Modulus in Rockmass with a Consideration of Rock and Joint Characteristcs (암석 및 절리특성을 고려한 암반의 탄성계수 추정에 관한 수치해석적 연구)

  • Son, Moorak;Lee, Wonki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.229-239
    • /
    • 2013
  • Elastic modulus in rockmass is an important factor to represent the characteristic of rock deformation and is frequently used to estimate the displacement induced due to tunnel excavation or other activities in rockmass. Nevertheless, the study to estimate the elastic modulus, which considers the rock type and joint characteristics (joint shear strength and joint inclination angle), has been done in less frequency. Accordingly, this study is aimed at estimating of elastic modulus in jointed rockmass. For this purpose, numerical parametric studies have been carried out with a consideration of rock and joint conditions. Tunnel displacement results have been used to estimate the elastic modulus of jointed rockmass using the elastic theory of circular tunnel. From this study, the results would be expected to have a great practical use for estimating the displacement induced due to tunnel excavation or other activities in jointed rockmass.

Characteristics of the Earth Pressure Magnitude and Distribution in Jointed Rockmass (절리가 형성된 암반지층에서 발생된 토압의 크기 및 분포특성)

  • Son, Moorak;Yoon, Cheolwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.203-212
    • /
    • 2011
  • This paper investigates the caharactheristics of the earth pressure magnigue and distribution in jointed rockmass for a safe and economic design and construction of earth retaining structures installed in rock stratum. For this purpose, this study will first investigate the limitations and problems of the existing earth pressure studies and then to overcome them th study will conduct the discontinuum numerical parametric studies based on the Discrete Element Method (DEM), which can consider the joint characteristics in rock stratum. The controlled parameters include rock type and joint conditions (joint shear strength and joint angle), and the magnitude and distribution characteristics of earth pressure have been investigated considering the interactions between the ground and the retaining structures. In addition, the comparison between the earth pressures induced in rock stratum and Peck's earth pressure for soil ground has been carried out. From the comparison, it is found that the earth pressure magnitude and distribution in jointed rockmass has been highly affected by rock type and joint condition and has shown different characteristics compared with the Peck's empirical earth pressure. This result would hereafter be utilized as an important information and a useful data for the assessment of earth pressure for designing a retaining structures installed in jointed rockmass.

Numerical Study on the Crack-propagation Controlling in Blasting Using Notched Charge Hole (노치 장약공을 이용한 발파균열제어에 관한 수치해석적 연구)

  • Cho, Sang-Ho;Park, Seung-Hwan;Kim, Kwang-Yeom;Nakamura, Yuichi;Kaneko, Katsuhiko
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • Mechanical excavation techniques employing tunnel boring machines (TBM) and rock splitters have been proposed to minimize rock damage for tunnel and underground waste repository facilities. Such a mechanical excavation, however, is extremely expensive and not applicable in all cases. For these reasons, controlled blasting using notched charge holes have been suggested to achieve crack growth along specific directions and inhibit growth along other directions. This study introduces a dynamic fracture process analysis code to simulate fracture processes of rock which has a notched charge hole.

A Study on the Stress Distribution of Pillar Basement during Two-arch Tunnel Excavation in Discontinuous Rock Mass (불연속성 암반에서 2-아치 터널 굴착시 필러 기초부 응력 분포에 대한 연구)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.123-131
    • /
    • 2009
  • Large scale model tests and numerical analyses were performed in order to investigate the stress distribution on the base of pillar during two-arch tunnel excavation in the regularly jointed rocks. It was observed that the stress was irregularly distributed on pillar and the angle of discontinuities seriously influenced on the stress distribution on the pillar base in the discontinuous rock mass. In the numerical analyses results, It was shown that the stress level of pillar was greatly changed depending on the excavation sequences of two-arch tunnel. It was also observed that stress distributed eccentrically at the pillar as well as at the base of pillar. It is necessary to consider this point for the design of two-arch tunnel.

Theoretical study on rock excavation method by whitelight thermal stress (백열광을 이용한 무진동, 무소음 암반파쇄공법의 이론적 고찰)

  • Choi, Yong-Ki;Han, Hyun-Hee;Kim, Sung-Hwan;Kim, Hak-Joon;Arrison, Norman L.;Kong, Hoon-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.229-234
    • /
    • 2002
  • Nowadays, the blast method is mainly operated in the fields of the rock excavation accompanied by construction site in Korea. Blast method has many merits such as improvement of workability, reducement of operation period, and etc. However, blast operation also create much loss and troubles with the neighbours for the environmental pollutions such as the noise, blast vibration, fly rocks and dusts. Thus, the non-vibration and shallow vibration methods have been used but they have also another problems in the view of the economy and the efficiency in operation. In this study, we had made laboratory tests for the breaking of the various Rock types by White Light Thermal Stress. The tests shows that one unit consuming 500kilowatts of electricity, would go 90 feet a day in tunneling if the tunnel was 16 feet by 16 feet. Also, if a faster rate of tunneling could be handled, other white light units could be added.

  • PDF

Shear Load-Transfer Function of Rock-Socketed Drilled Shafts Considering Borehole Roughness (굴착면 거칠기를 고려한 암반 근입 현장타설말뚝의 주면 하중전이함수 제안)

  • Seol, Hoon-Il;Woo, Sang-Yoon;Han, Keun-Taek;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.23-35
    • /
    • 2006
  • Shear load transfer characteristics of rock-socketed drilled shafts were analyzed. The constant normal stiffness (CNS) direct shear tests were performed to identify the major influencing factors of shaft resistance, i.e., unconfined compressive strength, borehole roughness, normal stiffness, initial confining stress, and material properties. Based on the CNS tests, shear load transfer function of drilled shafts in rocks is proposed using borehole roughness and the geological strength index (GSI), which indicates discontinuity and surface condition of rock mass in Hoek-Brown criterion (1997). The proposed load-transfer function was verified by the load test results of seven rock-socketed drilled test shafts subjected to axial loads. Through comparisons of the results of load tests, it is found that the load-transfer function by the present study is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load transfer of drilled shafts.

Elasto-Plastic Analysis of Underground Openings Considering the Effect of Excavation (굴착영향을 고려한 지하공동의 탄소성해석)

  • 최규섭;김대홍;황신일;심재구
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.225-234
    • /
    • 1998
  • The behavior of the underground opening depends mainly on the magnitude of the initial stress existing before excavation and on the stress redistribution due to the excavation. In the case of elasto-plastic materials such as rock mass, as the structural behavior of surrounded opening due to excavation depends on the stress path, methods and sequence of excavation have influences on the results of numerical analysis. Therefore, in order to design underground openings with large cross-section such as underground nuclear power plants, radioactive waste disposal cavems, oil storage caverns, and so on more reasonably it is desirable to consider the effect of the excavation sequence in the analysis. In this paper, the underground structure is analyzed using the finite element method and the distinct element methods with a view to review the the effect of the excavation sequence. Based on the results of the analysis the followings are discussed : influence of excavation shape and sequence, effect of structural reinforcements, influence of multi caverns.

  • PDF

Comparative analysis of cutting performance for basalt and granite according to abrasive waterjet parameters (연마재 워터젯 변수에 따른 현무암 및 화강암 절삭성능 비교분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Jo, Seon-Ah;Jung, Ju-Hwan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.395-409
    • /
    • 2022
  • To overcome the limitation of conventional rock excavation methods, the excavation with abrasive waterjet has been actively developed. The abrasive waterjet excavation method has the effect of reducing blasting vibration and enhancing the excavation efficiency by forming a continuous free surface on the rock. However, the waterjet cutting performance varies with rock fracturing characteristics. Thus, it is necessary to analyze the cutting performance for various rocks in order to effectively utilize the waterjet excavation. In this study, cutting experiments with the high pressure waterjet system were performed for basalt and granite specimens. Water pressure, standoff distance, and traverse speed were determined as effective parameters for the abrasive waterjet cutting. The cutting depth and width of basalt specimens were analyzed to compare with granite results. The averaged cutting depth of basalt was shown in 41% deeper than granite; in addition, the averaged cutting width of basalt was formed by 18.5% narrower than granite. The results of this study are expected to be useful basic data for applying rock excavation site with low strength and high porosity such as basalt.