• Title/Summary/Keyword: 암반 굴착

Search Result 604, Processing Time 0.026 seconds

A Study on the Numerical Analysis of A NATM Tunnel with Consideration of Construction Procedure and Field Measurement (시공과정 및 현장계측을 고려한 NATM 터널의 수치해석적 연구)

  • Park, Choon-Sik;Kang, Man-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • In order to investigate the tendency of general displacements and behaviors with respect to each construction process as well as the applicability of numerical analysis schemes, this research has focused on not only analyzing a variety of field observations made in a NATM tunnel, such as displacement of top and side, stress of shotcrete and axial strength of rock bolt, but also carrying out a series of numerical analyses. It was established from the investigation that the 2-dimensional continuum numerical analysis was the one which could more accurately predict displacement of crown and side in the area of one step excavation (patten, P1-P3), while the 2-dimensional discontinuum analysis was the most suitable scheme to study that of two step excavation (patten, P4-P6). In addition, the 2-dimensional continuum analysis enabled to appropriately predict the axial strength of rock bolt and stress of shotcrete in all the area of the tunnel. Finally, it has been possible to conclude from the study that the 3-dimensional continuum analysis should be applied to inspect the behavior and tendency with respect to each stage of the construction as well as in the case of joints, such as large turnouts where relaxation loads in both of horizontal and vertical direction are piled up.

Stability Estimation of the Closely-spaced Twin Tunnels Located in Fault Zones (단층대에 위치한 근접병설터널의 안정성평가)

  • Hwang, Jae-Seok;Kim, Ju-Hwan;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.170-185
    • /
    • 2018
  • The effect of fault on the stability of the closely-spaced twin tunnels located in fault zones was investigated by numerical analyses and scaled model tests on condition of varying widths, inclinations and material properties of fault. When obtaining the strength/stress ratios of pillar between twin tunnels, three different stresses were used which were measured at the middle point of pillar, calculated to whole average along the pillar section and measured at the left/right edges of pillar. Among them, the method by use of the left/right edges turned out to be the most conservative stability estimation regardless of the presence of fault and reflected the excavating procedures of tunnel in real time. It was also found that the strength/stress ratios of pillar were decreased as the widths and inclinations of fault were increased and as the material properties of fault were decreased on condition using the stresses measured at the left/right edges of pillar. As a result of scaled model tests, it was found that the model with fault showed less crack initiating pressure than the model without fault. As the width of fault was larger, tunnel stability was decreased. The fault had also a great influence on the failure behavior of tunnels, such as the model without fault showed failure cracks generated horizontally at the left/right edges of pillar and at the sidewalls of twin tunnels, whereas the model with fault showed failure cracks directionally generated at the center of pillar located in the fault zone.

A Study on the Thermal Characteristics of Jeju type Ground Heat Exchanger for Ground Source Heat Pump System applied to Jeju Island (제주도에 설치된 지열 열펌프 시스템용 제주형 지중열교환기의 열특성 연구)

  • Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.32-38
    • /
    • 2020
  • This study summarizes test methods and evaluation methods for examining the thermal characteristics of Jeju-type ground heat exchangers (GHXs) installed on Jeju Island, and analyzes the ground temperature and thermal characteristics of ground heat exchangers installed in various regions by using thermal response tests (TRT). Jeju Island is composed of volcanic rock layers, and the groundwater flow is well developed. A Jeju-type GHX can be installed up to 30 m from groundwater level after drilling a borehole. The ground heat exchanger has a structure in which several pipes are inserted into the borehole. In order to examine the characteristics of the Jeju-type GHX, tests were conducted on ground heat exchangers installed in four places on Jeju Island (Pyoseon, Jeju, Namwon, and Hallym). As a result of the analysis of the Jeju-type ground heat exchanger, the ground circulating water temperature stabilized according to the heat injection, depending on the installed location, and was formed within one to three hours. The ground heat exchanger capacity in Hallym was highest at 73.4 kW (cooling) and 82.8 kW (heating), and the Jeju-type calculation was lowest at 34.1 kW (cooling) and 23.3 kW (heating).

Development of testing apparatus and fundamental study for performance and cutting tool wear of EPB TBM in soft ground (토사지반 EPB TBM의 굴진성능 및 커팅툴 마모량에 관한 실험장비 개발 및 기초연구)

  • Kim, Dae-Young;Kang, Han-Byul;Shin, Young Jin;Jung, Jae-Hoon;Lee, Jae-won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.453-467
    • /
    • 2018
  • The excavation performance and the cutting tool wear prediction of shield TBM are very important issues for design and construction in TBM tunneling. For hard-rock TBMs, CSM and NTNU model have been widely used for prediction of disc cutter wear and penetration rate. But in case of soft-ground TBMs, the wear evaluation and the excavation performance have not been studied in details due to the complexity of the ground behavior and therefore few testing methods have been proposed. In this study, a new soil abrasion and penetration tester (SAPT) that simulates EPB TBM excavation process is introduced which overcomes the drawbacks of the previously developed soil abrasivity testers. Parametric tests for penetration rate, foam mixing ratio, foam concentration were conducted to evaluate influential parameters affecting TBM excavation and also ripper wear was measured in laboratory. The results of artificial soil specimen composed of 70% illite and 30% silica sand showed TBM additives such as foam play a key role in terms of excavation and tool wear.

Generation of blast load time series under tunnelling (터널 굴착 발파하중 시간이력 생성)

  • Ahn, Jae-Kwang;Park, Duhee;Shin, Young-Wan;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.51-61
    • /
    • 2014
  • It is necessary to perform a dynamic analysis to numerically evaluate the effect of blasting on nearby facilities. The blast load time history, which cannot be directly measured, is most often determined from empirical equation. The load has to be adjusted to account for various factors influencing the load and the frequency, but there is not a clear guideline on how to adjust the load. In this study, a series of 2D dynamic numerical analyses that simulates a closely monitored test blasting is performed, from which the blast load that matches the measured vibrations are derived. In the analyses, it is assumed that the hole generated by the blasting is in the form of a circle, and the load was applied normally to the wall of the opening. Special attention was given in selecting the damping ratio for the ground, since it has important influence on the wave propagation and attenuation characteristics of the blast induce waves. The damping ratio was selected such that it matches favorably with the attenuation curve of the measurement. The analyses demonstrate that the empirical blast load widely used in practice highly overstimates the vibration since it does not account for the energy loss due to rock fragmentation. If the empirical load is used without proper adjustment, the numerical analysis may seriously overstimate the predicted vibration, and thus has to be reduced in the analysis.

A basic study on the mixing bar interaction efficiency in shield TBM chamber (Shield TBM 챔버 내 mixing bar 교반 효율에 대한 기본연구)

  • Hwang, Beoung-Hyeon;Kim, Sang-Hwan;Lee, Kyung-Heon;An, Jun-Kyu;Cho, Sung-Woo;Kim, Yeon-Deok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • This study is the basic study for improving the range of influence and potency of mixing bars in the chamber of Shield TBM. Currently, there are many studies on disk cutters, cutter bits and segments in the study of the domestic Shield TBM. However, studies that mix soil and rocks that come from the membrane during the Shield TBM excavation and scatter them with screw conveyors are not as good as those abroad. In this study, the existing Shield TBM Chamber was manufactured as a miniature and the experiment. Inside the chamber, different sizes (4 mm, 6 mm, 8 mm, 10 mm) and colors (black, white, red, and blue) were used to form layers. This experiment was carried out by different shapes and sizes of RPM and mixing bars. In addition, the difference between a miniature model and a reclining one was checked to determine the effect of the direction of gravity on the mixing efficiency. This was done in the same way for all other conditions other than differences in the direction of gravity. Through this experiment, we identified the orientation of the chamber model, the size and shape of the mixing bar inside, and the mixing effect and torque depending on RPM. A comparative review of the mixing effect and torque confirmed that the shape and size of the mixing bar affect the mixing of samples, and that the direction of gravity affects torque.

Characters of Fracture-filling Minerals in the KURT and Their Significance (한국원자력 연구원 지하처분연구시설(KURT)의 단열충전광물 특성과 그 의미)

  • Lee, Seung-Yeop;Baik, Min-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.165-173
    • /
    • 2007
  • The KAERI Underground Research Tunnel (KURT) located in KAERI (Korea Atomic Energy Research Institute) was recently constructed following the site investigation in 2003. Its dimension is 180 m in length, 6 m in width, and 6 m in height, and it has a horseshoe-like cross-sec-lion and is located in the ground to the depth of 90 m. When the tunnel was dug into the ground with 100 m in length, fresh rocks, weathered rocks and fracture-filling materials were taken and examined by mineralogical and chemical analyses. There are phyllosilicate minerals such as illite, smectite and chlorite including calcite, which are filling some faults and cracks of the KURT rock. The illite and smectite usually coexist in the fracture, where their content ratio is different according to which mineral is predominant. There are high concentrations of U and Th in the rocks coated with iron-oxides and filled with secondary materials as compared with those in the fresh rocks. It seems that the radionuclides, which are slowly leached from the parent rocks or exist as a dissolved form in the groundwater and hydrothermal solution, may have been migrated along the fractures and thereafter selectively sorbed and coprecipitated on the iron-oxides and the fracture-filling materials. These results will be very useful far the evaluation of environmental factors affecting the nuclides migration and retardation when long-term safety is considered to the geological disposal of high-level radioactive wastes in the future.

Empirical Rock Strength Logging in Boreholes Penetrating Sedimentary Formations (퇴적암에 대한 경험적 암석강도 추정에 대한 고찰)

  • Chang, Chan-Dong
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.174-183
    • /
    • 2004
  • The knowledge of rock strength is important in assessing wellbore stability problems, effective sanding, and the estimation of in situ stress field. Numerous empirical equations that relate unconfined compressive strength of sedimentary rocks (sandstone, shale, and limestone, and dolomite) to physical properties (such as velocity, elastic modulus, and porosity) are collected and reviewed. These equations can be used to estimate rock strength from parameters measurable with geophysical well logs. Their ability to fit laboratory-measured strength and physical property data that were compiled from the literature is reviewed. While some equations work reasonably well (for example, some strength-porosity relationships for sandstone and shale), rock strength variations with individual physical property measurements scatter considerably, indicating that most of the empirical equations are not sufficiently generic to fit all the data published on rock strength and physical properties. This emphasizes the importance of local calibration before one utilizes any of the empirical relationships presented. Nonetheless, some reasonable correlations can be found between geophysical properties and rock strength that can be useful for applications related to wellhole stability where haying a lower bound estimate of in situ rock strength is especially useful.

A Study on the Three Dimensional Finite Element Analysis for the Tunnel Reinforced by Umbrella Arch Method (Umbrella Arch 공법이 적용된 터널의 3차원 유한요소 해석에 관한 연구)

  • 김창용;배규진;문현구;최용기
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.209-225
    • /
    • 1998
  • Recently, Umbrella Arch Method(UAM), one of the auxiliary techniques for tunnelling, is used to reinforce the ground and improve stability of tunnel face. Because UAM combines the advantages of a modern forepoling system with the grouting injection method, this technique has been applied in subway, road and utility tunnel sites for the last few years in Korea. Also, several research results are reported on the examination of the roles of inserted pipes and grouted materials in UAM. But, because of its empirical design and construction methodology, more qualitative and systematic design sequences are needed. Therefore, above sequences using numerical analysis are proposed and, the effects of some design parameters were studied in this research. In order to acco,mplish these objects, first, the roles of pipe and grouting materials, steel-rib and the others in ground improving mechanism of UAM are clarified. Second, the effects of design parameters are investigated through parametric studies. Design parameters are as follows; 1) ground condition, 2) overburden, 3) geometrical formulation of pipes, 4) grouting region and 5) characteristics of pipes.

  • PDF

Numerical Analysis on Cutting Power of Disc Cutter with Joint Distribution Patterns (절리분포 양상에 따른 디스크커터의 절삭력에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2011
  • The LCM test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. Moreover it is not easy to execute the test for jointed rock mass, and sometimes the design model estimated from the test can not be applied to the real design of disc cutter. In order to break this critical point, lots of numerical studies have been performed. PFC2D can simulate crack propagation and rock fragmentation effectively, because it is useful in particle flow analysis. Consequently, in this study, the PFC2D has been adopted for numerical analysis on cutting power of disc cutter according to the different angle of joint, the different direction of joint, and the different space of joint with jointed rock mass models. From the numerical analyses, it was concluded that the bigger cutting power of disc cutter was needed for reverse cutting direction to joint rather than for forward direction, and the cutting power of disc cutter was increased with decreasing the dip angle of joint and decreasing the space of joints in reverse cutting direction. The more precise numerical model for disc cutter can be developed from comparison between the numerical results and LCM test results, and the resonable guideline is expected for prediction of TBM performance and disc cutter.