• Title/Summary/Keyword: 암반면 평가

Search Result 148, Processing Time 0.024 seconds

Characterization of Tensile Strength of Anisotropic Rock Using the Indirect Tensile Strength Test (간접인장강도시험을 통한 이방성 암석의 인장강도 특성)

  • 김영수;정성관;최정호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.133-141
    • /
    • 2002
  • Isotropic rock and anisotropic rock have different tensile strength which has the greatest influence on rock failure. In this study, elastic modulus of anisotropic rock is obtained through uniaxial compression test, and tensile strength and tension failure behavior are analyzed through indirect tensile strength test. Stress concentration factor of a specimen at the center is obtained from anisotropic elastic modulus and strain by indirect tensile strength test. Theoretical solutions for tensile strength of isotropic and anisotropic rock are compared. Stress concentration factor of anisotropic rock is either higher or lower than isotropic rock depending on the inclination angle of bedding plane. The use of stress concentration factor of isotropic rock resulted in overestimation or underestimation of tensile strength.

Estimation of Blast Fragmentation using Stereophotogrammetry (입체사진측량기법을 이용한 파쇄도 추정)

  • Han, Jeong-Hun;Song, Jae-Joon;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.82-92
    • /
    • 2011
  • Stereophotogrammetry is used to extract spatial information of an object by constructing a stereo-image from two or more photos. In this study, stereophotogrammetry was adopted for analyzing blast fragmentation of rock blocks in a quarry site. 2D image processing and stereophotogrammetry were applied to the fragmentation analysis of rock blocks horizontally scattered in a laboratory, and their results were compared with physical measurements using a water tank. Fragmentation of rock muckpiles was estimated in laboratory and field tests by using the stereophotogrammetry and statistical analysis.

Running Safety Analysis of Railway Vehicle Systems for Ground Vibration (철도 차량의 지반진동에 의한 주행안전성 평가)

  • Choi, Jun-Sung;Jo, Man-Sup;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.288-295
    • /
    • 2006
  • In this study, dynamic behavior of the vehicles is analyzed, while the track is subjected to lateral vibrations due to earthquake and blasting load. A computer program(WERIA, Wheel Rail Interaction Analysis) is used, which can simulate dynamic responses of vehicles subjected to lateral vibrations. The analysis considers two types of vehicles: I.e. power cars of KTX and Busan subway train. It can also consider the interaction with sub-structures such as tracks and soil. The creep force module is considered, and the running safety of railway vehicles subjected to earthquake and blasting loading is studied. Based on the results of this study, the running safety of the vehicles can be confirmed against lateral vibration.

Program Development to Evaluate Permeability Tensor of Fractured Media Using Borehole Televiewer and BIPS Images and an Assessment of Feasibility of the Program on Field Sites (시추공 텔리뷰어 및 BIPS의 영상자료 해석을 통한 파쇄매질의 투수율텐서 계산 프로그램 개발 및 현장 적용성 평가)

  • 구민호;이동우;원경식
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.187-206
    • /
    • 1999
  • A computer program to numerically predict the permeability tensor of fractured rocks is developed using information on discontinuities which Borehole Televiewer and Borehole Image Processing System (BIPS) provide. It uses orientation and thickness of a large number of discontinuities as input data, and calculates relative values of the 9 elements consisting of the permeability tensor by the formulation based on the EPM model, which regards a fractured rock as a homogeneous, anisotropic porous medium. In order to assess feasibility of the program on field sites, the numerically calculated tensor was obtained using BIPS logs and compared to the results of pumping test conducted in the boreholes of the study area. The degree of horizontal anisotropy and the direction of maximum horizontal permeability are 2.8 and $N77^{\circ}CE$, respectively, determined from the pumping test data, while 3.0 and $N63^{\circ}CE$ from the numerical analysis by the developed program. Disagreement between two analyses, especially for the principal direction of anisotropy, seems to be caused by problems in analyzing the pumping test data, in applicability of the EPM model and the cubic law, and in simplified relationship between the crack size and aperture. Aside from these problems, consideration of hydraulic parameters characterizing roughness of cracks and infilling materials seems to be required to improve feasibility of the proposed program. Three-dimensional assessment of its feasibility on field sites can be accomplished by conducting a series of cross-hole packer tests consisting of an injecting well and a monitoring well at close distance.

  • PDF

Case Study on the Causes for the Failure of Large Scale Rock Mass Slope Composed of Metasedimentary Rocks (변성퇴적암류로 구성된 대규모 암반사면의 붕괴원인 분석에 관한 사례 연구)

  • Park, Boo-Seong;Jo, Hyun;Cha, Seung-Hun;Lee, Ki-Hwan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.506-525
    • /
    • 2006
  • For the design of large scale rock slope which has complex formations and geological structures, generally, insufficiency of geotechnical investigations and laboratory tests are the main factors of slope failures doling construction. In such case, remedial measures to stabilize slope should be selected and applied through reliable investigations and analysis considering the geotechnical characteristics. The rock slope of this study, one of the largest cut slopes in Korea with a length of 520.0 m and maximum height of 122.0 m consists of metasedimentary rocks. And a case study on the causes of large-scale rock slope failure was carried out by analysis of landslides history and site investigations during construction. When the slope with the original design slope of 0.7: 1.0 (H:V) was partially constructed, the slope failure was occurred due to the factors such as poor conditions of rocks (weathered zone, coaly shale and fault shear zone), various discontinuities (joints, foliations and faults), severe rain storm and so on. The types of failures were rockfall, circular failure, wedge failure and the combination of these types. So, the design of slope was changed three times to ensure long-term slope stability. This paper is intended to be a useful reference for analyzing and estimating the stability of rock slopes whose site conditions are similar to those of this study site such as geological structures and geotechnical properties.

Feasibility test on EDZ detection by using borehole radar survey

  • Cho, Seong-Jun;Kim, Jung-Ho;Son, Jeong-Sul;Kim, Chang-Ryol;Sugn, Nak-Hun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.239-244
    • /
    • 2006
  • Borehole radar reflection surveys were carried out in the horizontal borehole to detect EDZ while constructing the tunnel for the research facility of the nuclear waste disposal in Korea. The horizontal borehole has been bored at a length of 35 m from shelter to be parallel with the tunnel which would be planed. While the tunnel has been constructing with the explosive excavation, the borehole radar reflection surveys carried out 5 times with the interval of 2 or 4 days for monitoring EDZ. The most typical change of the reflection event resulted from the face of the wall of tunnel which had been produced newly by the excavation of the tunnel daily, EDZ has been detected with constructing images of difference between two measurement stages, and also the change of EDZ through the time has been done, which is due to the generation of crack and weakening of the rock strength of the face of the tunnel's wall near previous portion of the face of a blind end of tunnel according to explosive excavation.

  • PDF

A Study on Measurement of Rock Joint Roughness Using the Digital Photogrammetry (디지털 사진측량에 의한 암석의 절리면 거칠기 측정에 관한 연구)

  • Seo, Hyeonkyo;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.438-448
    • /
    • 2012
  • Applicability of the digital photogrammetry technique for measurement of rock joint roughness is addressed in this study using the DSLR camera. Measurements of roughness were performed for two rock joint specimens using the laser profiler and the digital photogrammetry technique. The statistical roughness parameters were estimated for two dimensional roughness profiles constructed from each method. Obtained results showed that the statistical roughness parameters estimated from the digital photogrammetry technique were lower than that based on the laser profilometer, even though a high degree of correlation might exist between them. The effects of camera direction on roughness measurements were found to negligible in practice. The digital photogrammetry could be a cost effective method to measure the roughness of rock joints with various scale at the fields.

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF

A New Coefficient for Three Dimensional Quantification of Rock Joint Roughness (암석 절리면 거칠기의 새로운 3차원 정량화 계수)

  • Park, Jung-Wook;Lee, Yong-Ki;Song, Jae-Joon;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.106-119
    • /
    • 2012
  • Roughness of rock joint has generally been characterized based upon geometrical aspects of a two-dimensional surface profile. The appropriate description of joint roughness, however, should consider the features of roughness mobilization at contact areas under normal and shear loads. In this study, direct shear tests were conducted on the replicas of tensile fractured gneiss joints and the influence of the shear direction on the shear behavior and effective roughness was examined. In this procedure, a joint surface was represented as a group of triangular planes, and the steepness of each plane was characterized using the concepts of the active and inactive micro-slope angles. The contact areas at peak strength which were estimated by a numerical method showed that the locations of the contact areas were mainly dependent on the distribution of the micro-slope angle and the shear behavior of joint was dominated by only the fractions with active micro-slope angles. Therefore, a three-dimensional coefficient for the quantification of rock joint roughness is proposed based on the distribution of active micro-slope angle: active roughness coefficient, $C_r$. Comparison of the active roughness coefficient and the peak shear strength obtained from the experiment suggests that the active roughness coefficient is the effective parameter to quantify the surface roughness and estimate the shear behavior of rock joint.

Case Study on the Shear Characteristics of Limestone Joint Surfaces by Direct Shear Tests (직접전단시험에 의한 석회암 자연절리면의 전단특성 분석사례)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.292-304
    • /
    • 2019
  • Limestone joint surfaces with smooth roughness were experimented by means of both the individual direct shear tests based on the KSRM standard test method and the multi-stage direct shear test to apply the stepwise vertical stresses. Changes in the roughness of the joint surfaces before and after the shear tests were examined and the difference between the two kinds of tests mentioned above was analyzed. In both tests, the shear resistance increased as the joint roughness increased and the maximum shear stress required for shearing the joint surface increased as the vertical stress increased. The peak friction angle obtained by the multi-stage direct shear tests was only 63% of that obtained by the individual direct shear tests. In the multi-stage direct shear test, the initial engagement of the concave-convex parts changes frequently during stepwise shearing process, which deforms the original roughness of a joint surface. Accordingly, the individual direct shear test is thought to be more effective when obtaining the friction angle of the rock joint surfaces. Limestone joint surfaces with smooth roughness of JRC value 4~8 were found to have peak friction angle of $47^{\circ}$, residual friction angle of $38^{\circ}$ and cohesion of 37 kPa.